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LARGE-SCALE PERTURBATIONS: 
OPPORTUNITIES FOR INNOVATION1 

STEPHEN R. CARPENTER 
Center for Limnology, University of Wisconsin, 

Madison, Wisconsin 53706 USA 

Abstract. Several approaches are discussed for statistical analysis of large-scale (and 
possibly unreplicated) ecological experiments. These include intervention analyses and 
comparisons of alternative models using Bayes' formula. Such techniques are unfamiliar 
to many ecologists and are not typically included in graduate curricula in ecology. I argue 
for increased training in these areas and for collaborations between statisticians and ecol- 
ogists to develop innovative approaches to the analysis of large-scale perturbations. 

Large-scale unplanned or natural experiments have 
played an important role in ecology and evolutionary 
biology for generations (Diamond 1986). Deliberate 
large-scale experiments have developed more recently, 
but have already made important contributions to ba- 
sic ecology (Likens 1985). Large systems are the ap- 
propriate objects of experimentation when key con- 
sumers are wide-ranging, manipulations unavoidably 
have effects on neighboring areas, and/or response var- 
iables can be measured only at large scales (Likens 
1985, Schindler 1987, Kitchell et al. 1988). When ex- 
trapolations to large scales from smaller scale studies 
are uncertain or controversial, large-scale experiments 
are often crucial (Likens 1985, Schindler 1987). Eco- 
system experiments can be combined with smaller scale, 
mechanistic experiments to yield more insight than 
would be possible from either approach alone (Kitchell 
et al. 1988). Ecologists now have unprecedented op- 
portunities to contribute to basic research and envi- 
ronmental problem-solving at large spatial and tem- 
poral scales (National Research Council 1988). 

Ecosystem experiments pose pragmatic, logistic, an- 
alytic, esthetic, and even legal challenges. The most 
severe obstacles arise from lack of appropriate sites 
and adequate, sustained funding. Among ecologists, 
much discussion has centered on statistical issues of 
design, analysis, and interpretation of ecosystem ex- 
periments. A tension exists between the need to rep- 
licate and the need to study processes at appropriately 
large scales. This Special Feature addresses these issues 
and some promising approaches to statistical analysis 
of ecosystem experiments. I hope that these articles 

' For reprints of this Special Feature, see footnote 1, page 
2037. 

will stimulate innovative thinking about ecosystem ex- 
perimentation, and productive collaborations among 
statisticians and ecologists. 

WHY REPLICATED EXPERIMENTATION 
IS POWERFUL 

All ecologists agree that experiments should be rep- 
licated whenever possible. Genuine replicates are in- 
dependent in the sense that the outcome of a given 
replicate has no effect on the outcome of any others. 
They represent the total variability affecting replicates 
at specified experimental conditions (Box et al. 1978: 
319). Identifying genuine replicates is often trouble- 
some for experimenters. Hurlbert (1984) provided 
ecologists with an excellent, thorough discussion of 
genuine replication. Millard (1987) and R. A. Carpen- 
ter (1989) have decried the fact that environmental 
monitoring data are often not replicated even when 
replication is possible. 

Replication improves experiments in three major 
ways. First, replication permits accurate estimation of 
experimental error. Second, results become increas- 
ingly precise as the number of replicates increases. 
Third, replication expands the range of experimental 
units studied. The population from which the replicates 
are drawn determines the extent to which results can 
be generalized. In this sense, replication (in the form 
of repetition of key experiments by others) has been 
conventional practice in science for far longer than 
statistics has been. 

The papers presented here are not intended to be an 
argument against replication. Rather, we pose alter- 
natives for large-scale experiments where standard rep- 
licated designs are not practical or are impossible. 
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WHAT CAN WE Do WHEN REPLICATION 
IS IMPOSSIBLE? 

Large-scale experiments, whether planned or un- 
planned, are frequently not replicable. The serendipi- 
tous nature of unplanned experiments usually pre- 
cludes replication, and even when manipulations are 
planned, experimental systems are usually limited in 
number. Candidate systems may be so different eco- 
logically that they do not constitute reasonable repli- 
cates. Funding levels and logistic limitations often pre- 
clude replication. 

Faced with these constraints, experimenters may be 
tempted to use minimal replication (e.g., duplicates). 
However, insufficient replication may be worse than 
no replication at all, if the experimenter does not con- 
sider the power of the statistical tests when interpreting 
results. The variability of community and ecosystem 
variates may be so great that experiments with only 
two replicates cannot detect perturbation effects unless 
they are very large. Modest effects, even ones that are 
real, are not likely to be detected in such experiments 
(S. R. Carpenter 1989). The resources that could be 
invested in duplicates might be better spent on more 
detailed mechanistic analyses conducted within the 
context of the large-scale experiment (Frost et al. 1988). 

One logical and valid response to these difficulties 
is to abandon statistics altogether. By using substantial 
and sustained manipulations, ecosystem experiment- 
ers have caused changes that are so large that they are 
convincing in the absence of statistical analysis (Hurl- 
bert 1984). The intrinsic variability of ecosystems may 
be so large that rather powerful manipulations would 
be needed to detect responses even if experiments could 
be replicated (S. R. Carpenter 1989). 

I will argue, on the other hand, that there are com- 
pelling reasons to pursue statistical analysis of large- 
scale perturbations. The less pronounced responses of 
communities and ecosystems to perturbation may be 
the most valuable indicators of stress or impending 
change. Schindler (1987) has made this point force- 
fully: 

Most of the well-studied perturbations that have se- 
verely disrupted ecosystem or community organiza- 
tion or function have been "sledgehammer blows." 
... Such studies are useful, but it would be risky to 
rely on them alone to predict responses of natural 
ecosystems to slowly increasing low-level perturba- 
tions. The dilemma we face is simply expressed. how 
do we identify when critical, measurable variables 
begin to vary outside the normal range, thereby in- 
dicating that the ecosystem is perturbed or stressed? 
(Schindler 1987:11) 

Statistical analysis could be enormously valuable for 
the identification of change in such indicator variables. 

At its best, statistical analysis sharpens thinking about 
data, reveals new patterns, prompts creative thinking, 
and stimulates productive discussions in multidisci- 
plinary research groups. For many scientists, these pos- 
itive possibilities of statistics are overshadowed by neg- 
atives: abstruse assumptions, emphasis of things one 
can't do, and convoluted logic based on hypothesis 
rejection. One colleague's reaction to this Special Fea- 
ture was that "statistics is the scientific equivalent of 
a trip to the dentist." This view is probably widespread. 
It leads to insufficient awareness of the fact that sta- 
tistics, like ecology, is a vital, evolving discipline with 
ever-changing capabilities. Most ecological experimen- 
tation is rooted in statistical methods developed for 
agriculture >50 yr ago. However, the statistical ap- 
proaches that show promise for large-scale experiments 
derive from more recent developments in statistics that 
are not well known to ecologists (Frost et al. 1988:250). 

The question of inference in large-scale experiments 
has two fundamental components: Are the differences 
between the premanipulation and postmanipulation 
periods nonrandom, and did the manipulation cause 
the differences (Frost et al. 1988:248-253). The next 
two sections of this paper will briefly summarize meth- 
ods for detection of nonrandom change and attribution 
of cause in large-scale experiments. 

DETECTION OF NONRANDOM CHANGE 

One of the earliest statistical analyses of a large-scale 
perturbation clearly illustrates the detection of non- 
random change in an unreplicated experiment. Box and 
Tiao (1975) considered the possible effects of two events 
on the concentration of atmospheric ozone in down- 
town Los Angeles (Fig. 1). Event A was diversion of 
traffic away from the city by a new freeway, combined 
with a new law which reduced the amount of reactive 
hydrocarbon in gasoline. Event B was a law requiring 
engine design changes in new cars. Box and Tiao asked 
if the apparent changes following events A and B could 
be explained by random processes. They present time 
series models for step changes (as might be expected 
following event A) and gradual changes (as might be 
expected following event B). They also discuss models 
for other types of interventions and responses, includ- 
ing "step" and "pulse" interventions that correspond 
to the "press" and "pulse" experiments of Bender et 
al. (1984). 

For the Los Angeles ozone data, a time series model 
was fit with terms for a step change occurring at event 
A, summer and winter gradual changes following event 
B, a moving average (which represents the dependency 
of sequential observations), and a seasonal effect. Sum- 
mer and winter changes were modeled separately be- 
cause the effects of engine changes after event B were 
expected to depend seasonally on solar radiation and 
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FIG. 1. Concentration of ozone in downtown Los Angeles vs. time, 1956-1972. Data shown are monthly means of hourly 

observations. Events A and B were interventions, explained in Detection of nonrandom change, which were expected to reduce 
ozone concentrations. Adapted from Box and Tiao (1975) with permission. 

atmospheric temperature inversions. Noting that re- 
siduals were nearly normally distributed and showed 
no obvious deficiencies in the model, Box and Tiao 
drew their conclusions from the parameter estimates 
(Table 1). Following event A, there was a step reduction 
in ozone concentration of 1.09 ,uL/L. Following event 
B, there was a gradual reduction of 0.25 AL L- yr-I 
during summer, but no appreciable decrement during 
winter. Most important, they concluded that these re- 
ductions were nonrandom. 

The analysis by Box and Tiao does not prove that 
the intervening events caused the nonrandom changes 
(Box et al. 1978:604). This point is critical, because 
conventional statistical tests in adequately replicated, 
properly randomized experiments can show whether 
manipulation caused changes in response variables. In 
Box and Tiao's intervention analysis, whether the re- 
ductions in ozone concentration were caused by the 
interventions must be decided on nonstatistical grounds. 
The intervention analysis makes a useful contribution 
in showing that noise in the time series is not likely to 
explain the ozone reductions. It also provides quan- 
titative measures of the effects of the interventions. 

Numerous approaches exist for determining whether 
changes following manipulations are nonrandom. The 
general approach proposed by Box and Tiao (1975) is 
flexible enough to apply to many large-scale ecological 
experiments, although long time series are required to 
fit the models. Some alternative approaches are de- 
scribed briefly below. Mohr (1988) provides a thought- 
ful and thorough discussion of analysis and infennce 
in experiments that do not fit the strictures of conven- 
tional statistics. 

Many large-scale ecological experiments have the 
advantage of an untreated reference (or "control") area 
(Likens 1985). The reference and manipulated systems 
are sampled in parallel by the same methods before 

and after manipulation. Changes that occur in both 
reference and manipulated systems could be due to 
some factor other than the manipulation. On the other 
hand, nonrandom changes that occur in the manipu- 
lated system but not the reference system can be at- 
tributed to the manipulation. Premanipulation sam- 
pling is essential to determining whether the intersystem 
difference changed after manipulation. Statistical ap- 
proaches to experiments with manipulated and refer- 
ence ecosystems compare the intersystem difference 
before manipulation to the intersystem difference after 
manipulation (Stewart-Oaten et al. 1986, Carpenter et 
al. 1989). Published approaches deal with step changes 
only. Considerably greater flexibility could be gained 
by applying the more general approach of Box and 
Tiao (1975) to time series of intersystem differences. 

The advent of cheap, rapid computation makes fea- 
sible the determination of error distributions by ran- 
dom permutation ofthe data (Diaconis and Efron 1983). 
These procedures eliminate the need to assume that 
data follow particular distributions, such as the normal 
distribution. Carpenter et al. ( 1989) proposed and eval- 
uated a randomization test for ecosystem experiments. 
Conclusions based on the randomization test were es- 
sentially the same as those based on conventional t 

TABLE 1. Maximum likelihood estimates (MLE) and stan- 
dard errors (SE) of parameters fit by Box and Tiao (1975) 
to the time series of Fig. 1. 

Parameter MLE SE 

Step change after event A -1.09 0.13 
Rate of annual decline in summer ozone 

concentration after event B -0.25 0.07 
Rate of annual decline in winter ozone 

concentration after event B -0.07 0.06 
Moving average term -0.24 0.03 
Seasonal term 0.55 0.04 
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tests. Edgington (1980) has provided a practical guide 
to randomization tests, but readers should be aware of 
theoretical errors pointed out by Green (1981) and 
Good (1980). Randomization tests for multivariate 
ecological data, such as community censuses, have been 
developed and applied to large-scale community 
changes (LeGendre and Fortin 1989). 

Sometimes it is possible to compare a single manip- 
ulated ecosystem with many reference systems using 
conventional statistics (Schindler et al. 1985, Schindler 
1987, Carpenter et al. 1989). For example, a conven- 
tional t test was used to compare a manipulated lake 
with nine reference lakes (Carpenter et al. 1989). The 
advantage of this approach is stronger inference: a small 
P value implies that the manipulation caused the de- 
viation of the manipulated system. However, the ca- 
pacity of such tests to detect real changes is much less 
than that of a test with the same number of ecosystems 
allocated equally to manipulated and reference groups 
(Carpenter et al. 1989). 

CAUSAL INFERENCE 

If nonrandom changes occur, one must then ask 
whether the manipulation or some other factor is the 
most likely cause of the changes (Frost et al. 1988). 
Often, ecological criteria, not statistical ones, are the 
basis for evaluation (Frost et al. 1988, Carpenter et al. 
1989). A quantitative analysis is possible when alter- 
native hypotheses can be compared using Bayesian sta- 
tistics. Bayesian analyses are widely used in natural 
resource management and environmental engineering 
(Reilly 1970, Blau and Neely 1975, Walters 1986, 
Reckhow 1990, Walters and Holling 1990), but are not 
yet common in community and ecosystem ecology 
(Carpenter et al. 1990). 

Bayesian statistics can be used to compare several 
alternative hypotheses, or models, in a common frame- 
work. The analysis involves a data set (Y) and a set of 
candidate models (M1). The models are chosen to rep- 
resent distinct alternative explanations, mechanisms, 
or policy options. Walters (1986) discusses in detail 
the selection of model sets. Prior to analysis, one as- 
signs a prior probability Pi(O) that each model is cor- 
rect. The prior probabilities may be calculated from 
previous studies. If no prior information is available, 
prior probabilities may be assigned subjectively. Sub- 
jective assignment of prior probabilities is often crit- 
icized. However, in most applications the prior prob- 
abilities have far less influence than the data on the 
outcome of the analysis. In any case, one can easily 
calculate the effects of the prior probabilities on the 
conclusions. For a detailed discussion of prior proba- 
bilities and their effects, see Box and Tiao (1973). Once 
the data, model set, and prior probabilities are in hand, 
one computes the likelihood of obtaining the data given 

each model, L(Y I M1). The likelihood usually is derived 
from the residuals after least-squares fitting of the mod- 
el. For normally distributed residuals, the probability 
p of any residual w is 

p = exp(- w2/2s2)/(2i-s2)05, 

where s is the standard deviation of all the residuals. 
The likelihood L is simply the product of the proba- 
bilities for all the residuals. Since the residuals are cen- 
tered around zero, this product simplifies to 

L = exp(-N/2)/[(2Xrs2)05]N. 

L decreases steeply and nonlinearly as the standard 
deviation of the residuals increases. The posterior 
probability Pi(l) for each model is 

Pi1(l) = L(YIM1) Pj(O)/T, 

where T is simply the sum of L . Pi(O) for all the models 
considered. The Pi(O) are the probabilities that each 
model is correct, given the information in the obser- 
vations Y. Future experiments and/or management ac- 
tions derive from the posterior probabilities. In sci- 
entific applications, the usual goal is to find one best 
model. Techniques exist for designing experiments that 
maximize the probability of discriminating among the 
models (Walters 1986). 

To illustrate the Bayesian approach, I have expanded 
an example by Blau and Neely (1975). They sought a 
model for flux of a pesticide through a pond ecosystem. 
In a whole-system experiment using radioactively la- 
beled pesticide, most of the label was associated with 
water, sediments, and fishes. For each of eight plausible 
explanations of ecosystem response, a model was erect- 
ed (Table 2). Blau and Neely represented each model 
(Table 2) as a system of differential equations. For the 
Bayesian analysis, I assumed that each model had an 
equal prior probability of 1/8. Posterior probabilities 
were calculated using likelihood values provided by 
Blau and Neely. Five of the seven models have ex- 
tremely small posterior probabilities and are effectively 
eliminated from further consideration. Model 4a is by 
far the most likely one. 

CONCLUSIONS 

When ecological questions require large-scale ex- 
perimentation, unreplicated experiments can be ex- 
tremely informative. Several statistical analyses, un- 
familiar to many ecologists, are available to guide the 
interpretation of unreplicated experiments. Some of 
these techniques are discussed in this Special Feature; 
for other possibilities, see Frost et al. (1988). While 
genuine replication is a powerful tool that should be 
used when possible, the scale of ecological research 
should not be dictated by statistical constraints. 



2042 SPECIAL FEATURE Ecology, Vol. 71, No. 6 

TABLE 2. Features of models of chemical transfer among water, sediment, and fish considered by Blau and Neely (1975), 
with likelihoods calculated by them and posterior probabilities calculated by me under the assumption of equal prior 
probability. Model numbers correspond to those in their paper. 

Feature 1 2a 2b 3a 3b 4a 4b 

Partitioning of chemical between sediment and water X X X X X X X 
Direct uptake of chemical by fish X X X X X X X 
Chemical excreted unchanged by fish X 
Chemical modified, then excreted by fish X X X X X X 

Modified, excreted chemical taken up directly by sedi- 
ment X X X 

Modified, excreted chemical partitions between water 
and sediment X 

Chemical in fish partitions between two tissues (e.g., 
lipid, nonlipid) X 

Modified, excreted chemical partitions between fish and 
water X 

Log likelihood -384 -187 -56.4 -10.1 -10.0 0.758 -0.745 
Posterior probability < 10-8 0.97 0.03 

We will learn more by repeating certain key ecosys- 
tem experiments than we would have by replicating 
the original experiment. Testing ideas in a broader range 
of systems, one of the most important benefits of rep- 
lication, can also be achieved by repetition. Repetition, 
in a different region, by a different research team that 
may use different methods, broadens our experience 
far more than mere replication. Empirical Bayesian 
analysis even allows quantitative conclusions from 
combined results of different studies (Morris 1983). 
Concern with time-treatment interaction (Walters and 
Holling 1990) underscores the importance of repeating 
key experiments. 

The opportunities for new approaches discussed in 
this Special Feature contrast sharply with the statistical 
training provided to most graduate students in ecology. 
Ecology graduate students typically learn statistics de- 
signed for laboratory containers and small test plots, 
and/or multivariate techniques used for describing 
communities and ecosystems. Experimental science at 
the scale of communities and ecosystems needs grad- 
uate students trained in time series analysis, Bayesian 
approaches, and computer-intensive statistics. 

The statistical challenges of large-scale experimen- 
tation appear less daunting than the practical ones. 
Effective ecosystem experiments require substantial 
funding sustained for years or even generations of re- 
searchers. Sites for large-scale experiments are rare. 
The value of dedicated tracts with long-term monitor- 
ing of multiple reference-systems is amply demonstrat- 
ed by Canada's Experimental Lakes Area (Schindler 
1987). Long-term data for estimating baseline vari- 
ability are also uncommon, though the Long-Term 
Ecological Research program will help fill that gap. We 
need more opportunities for important ecosystem ex- 
periments to be performed, replicated or repeated, and 
coordinated with long-term records. 
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