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Abstract. A simple direct correlation analysis of individual counts between different
populations often fails to characterize the true nature of population interactions; however, the
most common data type available for population studies is count data, and one of the most
important objectives in population and community ecology is to identify interactions among
populations. Here, I examine the dynamics of the spawning abundance of fall-run chinook
salmon spawning within the California Central Valley and the Klamath Basin, California, and
the Columbia River Basin, Oregon. I analyzed multiple time series from each watershed using
a multivariate time-series technique called maximum autocorrelation factor analysis. This
technique was used for finding common underlying trends in escapement abundance within
each watershed. These trends were further investigated to identify potential resource-mediated
interactions among the three groups of salmon. Each group is affected by multiple trends that
are likely to be affected by environmental factors. In addition, some of the trends are coherent
with each other, and the differences in population dynamics originate from variations in the
relative importance of these trends among the three watershed groups.

Key words: California Central Valley; Columbia River; fall-run chinook salmon; Klamath River;
minimum/maximum autocorrelation analysis; multivariate time-series analysis; Oncorhynchus tshawytscha;
resource-mediated population interactions.

INTRODUCTION

Populations often directly or indirectly interact with

each other. For example, populations may interact

through competition and predator–prey relationships

or simply respond synchronously to fluctuating envi-

ronmental factors. However, current analytical methods

struggle to identify the interactions among populations.

This is partly because populations are affected by

multiple factors: some are unique to individual popula-

tions and others are common to all populations

although the relative importance of the factors may

differ among the populations. One implication of this

type of complexity in population dynamics is that a

simple direct correlation analysis of individual counts

often fails to characterize the true nature of the

population interactions. Despite this limitation, the

most common data type available for population studies

is count data, and one of the most important objectives

in population and community ecology is to identify

interactions among populations.

This dilemma is exemplified in the attempt to

understand the environment-mediated indirect interac-

tions among chinook salmon (Oncorhynchus tshawyt-

scha) populations that spawn within major watersheds

in California and Oregon, USA. Chinook salmon are

anadromous fish, and throughout their life history their

vital parameters (survival, growth, development, and

reproduction) are affected by multiple environmental

conditions in both river and ocean environments (e.g.,

Kope and Botsford 1990, Myers et al. 1998, Wells et al.

2006). Some of the factors, such as the rate of coastal

upwelling, may exhibit synchronous fluctuations at these

distant locations, thereby potentially producing coher-

ent trends among the watershed groups. On the other

hand, other environmental signals, such as river flow

rate, may be unique to each watershed. This situation

complicates any investigation of the relationships among

salmon at different locations.

Despite this difficulty, there is a strong incentive to

understand how one group of salmon fluctuates relative

to others. At present, it is difficult for ocean fisheries to

target fish based on their watershed identities; as a

result, a management decision for one watershed

inevitably affects the other groups. For example, a

recent decline in the abundance of fall-run chinook

salmon within the Klamath Basin, California, led to the

near-complete closure of chinook salmon commercial

fisheries off the coasts of California and Oregon in 2006.

The closure was necessary despite the fact that fall-run

chinook salmon that spawn within the Columbia River

Basin, Oregon, and the California Central Valley were

thought to be sufficiently abundant to permit harvest

(PFMC 2006). This was because they comingle with the

Klamath stock in the ocean. For 2007, the Klamath
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stock is forecast to be relatively abundant, but the

California Central Valley stock is forecast to fall below

its historical levels (PFMC 2007). This situation

illuminates the complexity of the simultaneous manage-

ment of multiple stocks. Information on how the

dynamics of populations are related to one another is

expected to guide future management decisions and

research directions.

Here I use a technique known as maximum autocor-

relation factor analysis (MAFA; Solow 1994) to

investigate the relationships among different salmon

groups. MAFA extracts smooth trends from multivar-

iate time series. The premise of this study was that fall-

run chinook salmon spawning within the California

Central Valley, the Klamath Basin, and the Columbia

River Basin are affected by similar types of environ-

mental factors, and that analyzing how these factors are

related to each other would lead to a better understand-

ing of the relationships among these groups of fish.

While the type of interactions investigated in this study

are the resource-mediated indirect interactions among

populations of the same species in different locations,

the fact that MAFA is insensitive to the type of the

interactions means that the same technique can be used

to investigate other types of interactions such as more

direct competition or consumer–resource interactions.

DATA

The present analysis is based on the annual counts of

spawning adults (escapements) of fall-run chinook

salmon. As described, for example, in Groot and

Margolis (1991) and Quinn (2005), fall-run chinook

salmon return from the ocean to their natal rivers for

spawning during the fall months. The age at maturity of

chinook salmon in California and Oregon varies

between two and six years, but they typically return to

their natal stream at age 3, 4, or 5; this variation occurs

within individual tributaries. After spawning, the adults

die. Their offspring emerge from the gravel during

winter and spring, and after rearing for a short period in

freshwater, they migrate to the ocean. They remain at

sea until they begin their upstream spawning migration.

I use the term ‘‘population’’ to describe the group of

individuals of the same species that spawn within each

basin and have the same upstream migration season; the

term ‘‘subpopulation’’ is used to describe a group of

individuals within a population that spawn at the same

location within a basin, such as the same tributary.

These definitions reflect a general knowledge of the

spatiotemporal locations of individuals and groupings

used in stock assessments. However, there are also

alternative definitions that are based on other charac-

teristics of salmon such as migration frequencies and

genetics (e.g., Myers et al. 1998, Hill et al. 2002, Quinn

2005).

The data used in this analysis include the escapement

counts of individuals that are older than age 2. The

abundance of spawning adults was estimated at five

locations within the California Central Valley, six

locations within the Klamath Basin, and four locations

within the Columbia River (Fig. 1); hereafter, these

populations are called the Central Valley population,

Klamath population, and Columbia population, respec-

tively. The escapements have been estimated using

various methods, including redd (nest) counts, mark–

recapture of carcasses, and direct counts using weirs

(KRTAT 2001–2007); these data are available from the

Pacific Fishery Management Council (available online).2

At most of the study locations, the escapements

primarily include naturally spawning adults; however,

data from Bogus Creek (Klamath population) are

known to include a large number of individuals that

strayed from a nearby hatchery, and data from Spring

Creek and lower river hatcheries (Columbia population)

are mostly counts of hatchery-reared salmon (PFMC

2007). A preliminary analysis suggested that the

dynamics of hatchery-reared salmon share similar

factors found in the naturally spawning salmon, but

the weights on the factors are different between them.

Therefore, the three time series affected by hatcheries

were included to supplement the time series of naturally

spawning salmon.

METHOD

The main technique used in the present analysis is

MAFA (Solow 1994). Although the technique is not

new, it has rarely been used. Therefore, I first provide a

synopsis of the method, followed by a description of the

procedure employed in the present study.

Maximum autocorrelation factor analysis (MAFA)

MAFA is a statistical technique used for finding

smooth trends from multivariate time series (Solow

1994). The technique identifies weighted linear combi-

nations of time series to express new variables (Appen-

dix). Mathematically, the technique is very similar to

principal component analysis (PCA), which finds the

weighted linear combination of multivariate data based

on their variance (e.g., Johnson and Wichern 1992).

MAFA departs from PCA in that MAFA finds the new

variables based on their lag-one autocorrelations; in

other words, the first factor, which is called the first

maximum autocorrelation factor (MAF), is the weighted

linear combination of the original data with the highest

lag-one autocorrelation. The second MAF, another

weighted linear combination, is uncorrelated with

(orthogonal to) the first MAF and has the second

highest lag-one autocorrelation. The third MAF, again a

weighted linear combination, is uncorrelated with the

first and second MAFs and has the third highest lag-one

autocorrelation, and so on.

For data consisting of n time series, as many as n

independent (uncorrelated) MAFs can be obtained. The

2 hhttp://www.pcouncil.orgi
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MAFs with significantly positive lag-one autocorrela-

tions are often retained for further analysis. Because a

positive lag-one autocorrelation indicates a smoothly

changing trend (Diggle 1990), the significant MAFs are

the smooth trends that exist in the original time series.

Further rationale for the use of MAFA in population

studies is provided in the Discussion.

Maximum autocorrelation factors can be found by

simple calculations. The method is described by Solow

(1994), and the Appendix describes some important

statistics associated with MAFA. Furthermore, the

MATLAB (MathWorks 2001) code used to calculate

MAFs is provided in the Supplement to this paper. This

code is more general than the method described in Solow

(1994), in that it can also find the maximum autocor-

relation factors based on a time lag of greater than one.

Although I do not use the analysis with a higher lag in

the present study, I suspect that in future studies it may

prove useful in extracting specific types of trends, such

as cyclic trends, from multivariate time series. I term the

analysis with a higher lag a ‘‘generalized autocorrelation

factor analysis.’’

Specific procedure

To gain some insight into the way in which raw

subpopulation data may be related to each other, I first

calculated pairwise correlations between subpopulation

time series. Then, treating the correlations as a similarity

measure, multidimensional scaling (MDS; e.g., Johnson

and Wichern 1992) was used to visualize the relationship

among the time series. MDS can be thought of as a

technique to plot a map of objects based on their pair-

wise distances rather than their coordinates. The objects

that are close to each other are clustered on the map,

FIG. 1. Escapements of fall-run chinook salmon (Oncorhynchus tshawytscha): (a–d) Columbia population (Oregon, USA), (e–j)
Klamath population (California, USA), and (k–o) Central Valley population (California, USA). Individual panels show data for:
(a) CO1, Columbia River lower river wild, (b) CO2, Columbia river upriver bright, (c) CO3, Spring Creek Hatchery, (d) CO4,
Columbia River lower river hatcheries, (e) KL1, Trinity River, (f ) KL2, Salmon River, (g) KL3, Scott River, (h) KL4, Shasta
River, (i) KL5, Bogus Creek, ( j) KL6, Klamath River, (k) CV1, upper Sacrament River, (l) CV2, Feather River, (m) CV3, Yuba
River, (n) CV4, American River, and (o) CV5, San Joaquin River. In each panel, symbols represent the raw data, and a smooth
curve indicates a twice-applied three-point moving average. (See Method: Specific procedures.)
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and vice versa. In the present analysis, the value of ‘‘one

minus the correlation between the time series’’ was used
as the distance measure. Therefore, objects (i.e.,

subpopulation time series) that are more strongly
correlated with each other are placed closer together

on ‘‘the map.’’
To extract smooth trends from subpopulation data

within each basin, MAFA was applied separately to the
time series from each basin. Because the primary interest
lies in the trends in the time series rather than the degree

of variability, each time series was standardized before
applying MAFA by subtracting its mean and dividing

by its standard deviation. Those MAFs with a signifi-
cant positive lag-one autocorrelation were then retained

for subsequent analysis. The test of the significance of
lag-one autocorrelation was based on the one-tail

Bartlett test (Diggle 1990) with the significance level a
of 0.1. The conservative a value was used because signals

with a smaller lag-one autocorrelation can also reflect
environmental signals (see Discussion). This process was

repeated for the data from the other basins. Finally, to
find the associations between the MAFs from different

basins, pairwise correlations were calculated between the
significant MAFs.

RESULTS

Multidimensional scaling of subpopulation dynamics

Multidimensional scaling of the correlations among

the subpopulation time series (Fig. 2) reveals that the
subpopulation dynamics within each population tend to

be clustered together. The exceptions to this trend are
the subpopulations in the Klamath River (Klamath

population; Fig. 1j) and Spring Creek (Columbia
population; Fig. 1c), both of which exhibit similarities

with the dynamics of the Central Valley subpopulations.
Without further analysis, one might conclude that the

escapement trends in the Klamath River and Spring
Creek are unique within the basin and are similar to

those observed in the Central Valley population.

Maximum autocorrelation factor analysis

MAFA reveals that the escapements within each basin
are affected by three significant smooth trends (Fig. 3).

The trends are denoted by MAF A1, A2, and A3 for the
Columbia Basin in order of decreasing lag-one autocor-

relation. Similarly, the three trends in the Klamath Basin
and the Central Valley are denoted by MAF B1, B2, and

B3, and MAF C1, C2, and C3, respectively. The lag-one
autocorrelations of these trends are shown in Table 1.

The three MAFs from each basin show potential
underlying trends exhibited by a corresponding popula-

tion.
The loadings on these factors are shown in Fig. 4.

These loadings are the coefficients on the scaled MAFs
(Appendix), and indicate how much variability in the

scaled subpopulation data is explained by each scaled
MAF. Here, I consider that if a loading is greater in

magnitude than 0.32, then the factor is deemed to affect

the subpopulation dynamics. If a loading is greater in

magnitude than 0.71, then the effect is considered to be

strong. These values (0.32 and 0.71) correspond to

;10% and 50%, respectively, of the variability in the

subpopulation dynamics explained by the MAF (Ap-

pendix).

For the Columbia population, MAF A1 strongly

affects the escapements in the upper river, and MAF A2

strongly affects those in Spring Creek; however, other

locations are unaffected by these two factors. MAF A3

affects the escapements in all of the locations except

Spring Creek.

For the Klamath population, MAF B1 affects the

escapements at all locations except the Scott River and

Bogus Creek; however, those at the Trinity River and

Klamath River are negatively associated with this

factor. MAF B2 has an especially strong effect upon

the escapements in the Klamath River; it also affects

those in the Scott River and Bogus Creek. Finally, MAF

B3 explains part of the trends at all locations with the

exception of the Klamath River.

For the Central Valley population, MAF C1 affects

the escapements at all locations except the San Joaquin

River. MAF C2 strongly affects the escapements at the

San Joaquin River, and to a lesser degree those at the

Yuba River. MAF C3 affects the escapements at the

Yuba River and San Joaquin River, but the signs of the

associations are reversed between these two locations.

These results reveal that most of the subpopulations

share MAF with at least one other location within the

same basin and that the subpopulation dynamics reflect

a mixture of these common factors. The only exception

to this observation is the subpopulation at Spring Creek

(Columbia population), which is only affected by a

single factor that is unique within the basin; however, in

FIG. 2. Multidimensional scaling of correlations among
escapement time series of fall-run chinook salmon (gray stars,
Columbia Basin; light gray diamonds, Klamath Basin; black
circles, California Central Valley). See Fig. 1 for the description
of abbreviations. Values are unitless because they have been
scaled.
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the following section, I will show that this exception is

probably an artifact of the limited number of time series

available from the Columbia River.

Associations among maximum autocorrelation factors

Pairwise correlations among the MAFs (Table 2)

reveal that MAF A1 (the Columbia population), MAF

B2 (the Klamath population), and MAF C1 (the Central

Valley population) are strongly correlated with each

other. In addition, MAF A2 is significantly correlated

with MAFs B1, B2, and C1. The latter relationship

suggests that MAF A2 may contain a mixture of at least

two trends; this is probably an artifact resulting from the

low number of time series available from the Columbia

River.

The association between the dynamics of the Klamath

River subpopulation and those in the California Central

Valley (Fig. 2) is derived from the strong association

between MAF B2 and C1. MAF B2, however, is not

unique to the Klamath River subpopulation because this

trend is shared by the Scott River and Bogus Creek

subpopulations (Fig. 4b). The associations between the

latter two time series and the subpopulation dynamics of

the Central Valley population was not discovered by

simple correlation analysis between the raw time series

(Fig. 2), as other factors also strongly affect the Scott

River and Bogus Creek subpopulations.

The association between the dynamics of the Spring

Creek subpopulation of the Columbia River population

and those of the California Central Valley (Fig. 2) is

derived from the association between MAFs A2 and C1.

The upper river subpopulation of the Columbia

population also exhibits a trend (MAF A1) that is

strongly associated with MAFs B2 and C1; however, the

upper river subpopulation is also loaded with MAF A3,

which is not correlated with the trends found in other

basins. This characteristic distinguishes the trends of the

upper river subpopulation from those in other basins

(Fig. 2).

DISCUSSION

The dynamics in the time series of individual counts

(population and subpopulation data) are produced by

the superimposition of multiple signals, including those

associated with the environment and sampling varia-

tions. Some of the variations are shared among many

time series, while others are unique to single time series

or restricted to a small number of time series. Maximum

autocorrelation factor analysis (MAFA) can take

FIG. 3. Maximum autocorrelation factors (MAFs). Symbols show resultant linear combinations of original escapement data,
and a smooth curve indicates a twice-applied three-point moving average. (a–c) MAF A1–A3 of the Columbia population, (d–f)
MAF B1–B3 of the Klamath population, and (g–i) MAF C1–C3 of the California Central Valley population.

TABLE 1. Lag-one autocorrelation of maximum autocorrela-
tion factors (MAFs).

MAF

A1 A2 A3 B1 B2 B3 C1 C2 C3

Lag-one
autocor-
relation

0.92 0.83 0.74 0.80 0.67 0.43 0.82 0.65 0.30

MASAMI FUJIWARA8 Ecology, Vol. 89, No. 1
R

ep
or

ts



advantage of this complexity and extract smooth trends

from multivariate time series of individual counts.

Subpopulation time series within each of the three

populations contain three smooth trends. The trends

from different populations (MAF A1 in the Columbia

population, MAF B2 in the Klamath population, and

MAF C1 in the Central Valley population; Fig. 3, Table

2) are strongly associated with each other, suggesting

that a common environmental condition affects all three

populations; however, the original subpopulation time

series loaded with these factors (Fig. 4) did not

necessarily show clear direct correlations with each

other because they were also affected by other factors

that are not strongly correlated among the populations.

A general conclusion from this result is that simple

correlation analysis between individual counts may not

reveal the true nature of associations between them. This

issue can be overcome using a more detailed analysis

such as the one presented here.

These results can assist prediction of the relative

escapement abundances of the three populations. I

suspect that this type of information, along with further

improvements in the technology used to rapidly

determine the population identity of fish caught at sea,

will become important tools in the future management

of these populations.

In addition to factors that are strongly correlated with

each other, the three analyzed populations are also

affected by factors that are not strongly correlated;

however, although MAFs A3, B3, and C3 do not show

statistically significant correlations with each other

(Table 2), their peaks and troughs show some similar-

ities (Fig. 3). This observation is also true of MAFs B1

and C3. I speculate that further research may prove that

these factors actually represent similar types of environ-

mental conditions at different locations. If this is the

case, then the underlying factors of the three popula-

tions are very similar to each other, and the factor that

actually separates them is the relative importance of

these factors among the populations.

The results from the present study suggest that the

dynamics of the three populations exhibit some similar-

ities. One of explanations for the synchronous trends is

that they are caused by coherent fisheries along the coast

of California and Oregon. The escapement abundance

(i.e., the magnitude) is strongly affected by the fisheries;

however, the trends (i.e., relative abundance over time)

are often not affected because in most years the fish are

harvested in numbers proportional to the estimated total

abundance for that year for the basin. Therefore, I

suspect the environmental factors are probably the

cause. A study has recently been initiated to determine

the associations between the trends and various envi-

ronmental variables. The results of the present study are

expected to aid the future analysis by giving some

indication of the potential relationships of the factors

among the three populations.

FIG. 4. Loadings of the spawning escapements on the three
maximum autocorrelation factors: (a) Columbia River Basin,
(b) Klamath Basin, and (c) California Central Valley. See Fig. 1
for the description of abbreviations. For each subpopulation,
loadings on the first, second, and third MAFs (see Appendix)
from left to right are shown. Values are unitless because they
have been scaled.

TABLE 2. Correlation between maximum autocorrelation
factors (MAFs) of three different Chinook salmon (Onco-
rhynchus tshawytscha) populations in Oregon and California,
USA.

Population

Klamath
population

Central Valley
population

B1 B2 B3 C1 C2 C3

Columbia

A1 0.39 0.62� �0.07 0.55� 0.10 �0.03
A2 �0.64� 0.52� 0.02 0.51� �0.17 0.09
A3 0.25 0.01 0.27 �0.12 �0.11 �0.13

Klamath

B1 1.00 0.00 0.00 �0.22 �0.05 0.06
B2 0.00 1.00 0.00 0.75� �0.01 0.21
B3 0.00 0.00 1.00 0.31 �0.10 �0.09

� Significant correlation at a¼ 0.05.
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Solow (1994) discusses two attributes that make

MAFA particularly appropriate in population analysis.

First, MAFA takes advantage of the fact that the data

are collected in sequence. This contrasts with other

techniques, such as principal component analysis and

usual factor analysis, which ignore the order in which

data are collected. Second, MAFA maximizes the

signal : noise ratio of the time series. Population data

are often noisy because they include sampling errors.

MAFA is a general approach to the extraction of signals

from multivariate time-series data, making it appropri-

ate for the analysis of population time-series data.

In addition to these attributes, I consider two other

factors that justify the use of MAFA in population

studies. First, the signals of environmental fluctuations

are generally not just white noise; they contain

structures. For example, commonly used environmental

indices such as the North Atlantic Oscillation Index and

Pacific Decadal Oscillation Index, which have been

shown to be associated with population trends in many

organisms (e.g., Hare et al. 1999, Fujiwara and Caswell

2001, Hallett et al. 2004) have a significant positive lag-

one autocorrelation (see Fujiwara 2008). Thus, summa-

rizing the population data based on a lag-one autocor-

relation increases the chance of detecting such

environmental signals in population data. Second, the

life history strategy of organisms can also act as a

smoothing mechanism that induces a positive lag-one

autocorrelation in population time series. For example,

the chinook salmon counts included two or more

cohorts; consequently, an environmental condition in a

given year affects the population counts over two or

more years unless the effect occurred during the short

period around the upstream spawning migration period.

As a result, even if the relevant environmental fluctua-

tion did not contain a significant lag-one autocorrela-

tion, the life history strategy of the organisms would

have induced a positive lag-one autocorrelation; this

enhances the ability to extract the environmental signals

from population time-series data using MAFA.

An obvious alternative approach to MAFA is

canonical correlation analysis (CCA; e.g., Johnson and

Wichern 1992). As with MAFA, CCA finds the weighted

linear combinations of the variables in each of the two

groups of variables; however, CCA differs from MAFA

in that it finds the linear combinations within each of the

two groups simultaneously based on correlations

between the complementary linear combinations from

the two groups (e.g., Johnson and Wichern 1992). One

disadvantage of CCA is that it tends to overfit the

statistical model to the data, especially when many time

series are included in the analysis. This problem is

analogous to the tendency to overfit a model to data in

multiple regression analysis when many independent

variables are included. Thus, the results of CCA need to

be interpreted with caution.

The results obtained from MAFA also need to be

interpreted carefully because, for example, MAFA does

not necessarily separate all signals from the multivariate

time-series data. This is especially true when the

underlying factors that affect a population are also

correlated with each other or if a limited number of time

series are available. I suspect that MAF 2 from the

Columbia population is an example of this phenome-

non; however, MAFA remain useful in that it can isolate

other independent signals from the data if any exist. On

the other hand, when a large number of variables are

included in the analysis, many significant factors are

found. This makes the interpretation of the results

complicated. This was the case with the preliminary

analysis in which spawning escapement time series from

all three basins are included in a single MAFA.

Currently, there is no guideline for appropriate number

of variables to be included or the minimum length of

time series required for the analysis, except the number

of variables cannot exceed the length of the time series.

However, I suspect the data requirements for MAFA

are very similar to those for PCA because the two

methods are mathematically very similar.

Another caveat regarding the use of MAFA is that it

may fail to separate signals that do not have a significant

lag-one autocorrelation. This is especially true in the

case that the life history strategy of the organisms does

not enhance a lag-one autocorrelation. For example, if

coho salmon (O. kisutch), which have a fixed age at

maturation, are affected only by environmental factors

that do not have a significant lag-one autocorrelation, it

would be difficult to isolate the environmental signals

from their population dynamics using MAFA. The final

caveat regarding MAFA is the issue concerning

correlations between autocorrelated time series (Pyper

and Peterman 1998). When two time series are

autocorrelated, it increases the chance of finding a

spurious correlation between them; consequently, the

correlation analysis between autocorrelated variables

should be interpreted cautiously.

In the present study, MAFA was used to identify

associations between populations of the same species by

taking advantage of multivariate time-series data

available for each population; however, there are ways

in which this approach might be extended. For example,

it may be possible to use MAFA to analyze data when

only a single time series is available from each

population but data are available from multiple

populations of possibly different species. In such a case,

I would suggest applying MAFA to the time series by

treating the data from different populations as a single

set of multivariate time series. In this way, the loadings

from single MAFA can then be examined to find their

associations. When a large number of time series are

available from different populations, I suggest classify-

ing them into logical subgroups. This type of analysis

would be useful when analyzing interactions among

populations within a community, such as the data

available from a marine reserve or fishery data of

multiple species within the same region. In such studies,
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consumer–resource interactions and more direct com-
petition might appear as negative associations between

time series.
The analysis presented in this paper summarized the

data based on a positive lag-one autocorrelation;

however, as suggested by Solow (1994), it is conceivable
that in some studies the negative lag-one autocorrelation
may be of interest. For example, a negative lag-one

autocorrelation may be indicative of overcompensatory
density dependence. Similarly, MAFA with autocorre-
lation in lags of higher than one time unit (generalized

autocorrelation factor analysis) may be useful in certain
studies.
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APPENDIX

Descriptions of maximum autocorrelation factor analysis and associated statistics (Ecological Archives E089-001-A1).

SUPPLEMENT

MATLAB source codes used to calculate maximum autocorrelation factors (Ecological Archives E089-001-S1).
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