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Abstract The regional-scale importance of an aquatic

stressor depends both on its regional extent (i.e., how

widespread it is) and on the severity of its effects in eco-

systems where it is found. Sample surveys, such as those

developed by the U.S. Environmental Protection Agency’s

Environmental Monitoring and Assessment Program

(EMAP), are designed to estimate and compare the extents,

throughout a large region, of elevated conditions for various

aquatic stressors. In this article, we propose relative risk as a

complementary measure of the severity of each stressor’s

effect on a response variable that characterizes aquatic

ecological condition. Specifically, relative risk measures the

strength of association between stressor and response

variables that can be classified as either ‘‘good’’ (i.e., ref-

erence) or ‘‘poor’’ (i.e., different from reference). We

present formulae for estimating relative risk and its confi-

dence interval, adapted for the unequal sample inclusion

probabilities employed in EMAP surveys. For a recent

EMAP survey of streams in five Mid-Atlantic states, we

estimated the relative extents of eight stressors as well as

their relative risks to aquatic macroinvertebrate assem-

blages, with assemblage condition measured by an index of

biotic integrity (IBI). For example, a measure of excess

sedimentation had a relative risk of 1.60 for macroinverte-

brate IBI, with the meaning that poor IBI conditions were

1.6 times more likely to be found in streams having poor

conditions of sedimentation than in streams having good

sedimentation conditions. We show how stressor extent and

relative risk estimates, viewed together, offer a compact and

comprehensive assessment of the relative importances of

multiple stressors.
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Introduction

The activities of human beings have altered the structure

and function of aquatic ecosystems in a variety of ways.

Assessing the ecological condition of streams and lakes,

therefore, involves an evaluation both of the biota and of

the environmental factors that have direct and indirect ef-

fects on biota. Although it is possible to assess the condi-

tion of the biota by itself (e.g., Karr 1981, Karr and Chu

1997), or to conduct assessments of individual stressors

such as acidic deposition (e.g., Stoddard and others 2003)

or nutrients (e.g., U.S, Geological Survey 1999), it is

becoming increasingly common (and necessary) to assess

biota and stressors simultaneously (e.g., U.S. Environ-

mental Protection Agency 1994, 2000). A straightforward

strategy for such assessments is to use biological data to

access the ecological condition of the aquatic ecosystems,

and also to use chemical, physical, and biological data to

evaluate the relative importance of various stressors.

At a regional scale, the relative importance of an aquatic

stressor depends both on its relative extent throughout the

region (that is, how widespread or common it is) and on its

relative severity of effect (that is, its consequence for the

biota at stressed sites within the region). Sample surveys

conducted across large regions, with randomized site

selection and uniform sampling protocols, can directly

estimate the relative extent of elevated stressor conditions

with known reliability (U.S. Environmental Protection
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Agency 1994, 2000; Boward and others 1999; Herlihy and

others 1990, 2000). In this article, we focus on the problem

of estimating the severity of the effect of stressors.

A stressor’s severity of effect can be measured by the

strength of its empirical association with significant bio-

logical change, as observed in regional survey data. Thus,

the effect of a stressor is deemed to be relatively severe if

differences across sites in stressor condition are strongly

associated with substantial differences in biotic condition.

Bivariate associations between stressors and biological

responses have frequently been modeled using correlation

or regression analysis (Van Sickle 2003). In addition,

multiple regression models have been used to relate a

single response variable to multiple stressors (e.g., Dyer

and others 2000; Gordon and Majumder 2000; Yuan and

Norton 2004), and multivariate methods can relate multiple

responses to multiple stressors (e.g., Comeleo and others

1996; Tong 2001). The correlation coefficients or stan-

dardized partial regression coefficients of such models are

used to express the relative strengths of association be-

tween stressors and responses.

Regression and correlation coefficients are best suited to

describing associations among continuous measures of

ecological condition. However, we believe that few people,

apart from stream ecologists, can clearly and directly

interpret numerical values of a continuous variable such as

total phosphorus concentration or riparian vegetative cover,

in terms of stream ecological condition. The public relies

instead on ecologists to identify the ranges of phosphorus or

riparian cover that delimit generally interpretable classes of

condition with class labels such as ‘‘good,’’ ‘‘fair,’’ or

‘‘poor.’’ Thus, we believe that environmental survey results

and resulting assessments can be conveyed more effectively

to some audiences by using discrete condition classes, rather

than continuous variables, for all stressors and responses.

In this article, we suggest simple and compatible sta-

tistics for stressor extent and severity of stressor effect that

are designed for dichotomous stressor and response vari-

ables. To measure a stressor’s extent, we estimate the

proportion of all streams within a region that are in

‘‘good’’ or ‘‘poor’’ condition for that stressor. To measure

the severity of a stressor’s effect, we estimate ‘‘relative

risk,’’ a statistic that is widely used in human health

assessments and is familiar to a large part of the intended

audience for ecological assessments.

Here, we illustrate the use of relative risk to assess the

severity of effect for eight potential stressors on the

macroinvertebrate communities in small streams of the

Mid-Atlantic region of the United States. We describe how

relative risk and corresponding relative extent estimates

offer complementary evaluations of relative importance for

the eight stressors. Our estimates of severity and extent,

and confidence bounds for those estimates, are derived

from the design of our Mid-Atlantic sample survey (Her-

lihy and others 2000; Stoddard and others 2006a), which

included unequal-probability selection of the survey sites.

Methods

We used data collected as part of the Mid-Atlantic Inte-

grated Assessment (MAIA; Stoddard and others 2006a).

The MAIA study collected biological (fish, macroinverte-

brate, and periphyton assemblages), physical habitat, and

chemical data from streams and rivers throughout the Mid-

Atlantic Region between 1993 and 1998 (Figure 1). The

region encompasses approximately 310,000 km2 and ex-

tends from the Atlantic Ocean in the east to the Ohio River

in the west, and from the headwaters of the Delaware and

Susquehanna drainages in New York in the north to the

Roanoke/Chowon drainage in North Carolina in the south

(Figure 1). It includes all of the states of Delaware,

Maryland, Pennsylvania, Virginia and West Virginia, and

parts of New Jersey, New York, and North Carolina.

Design of the MAHA/MAIA Stream Surveys

During 1993 and 1994, EPA researchers used sample sur-

vey techniques to select small streams (lst through 3rd

Fig. 1 The Mid-Atlantic region with sampling sites on small upland

streams sampled by the Mid-Atlantic Highlands Assessment (MAHA)

project, small regional streams sampled by the Mid-Atlantic Integrated

Assessment (MAIA) project, and large rivers sampled by MAIA
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Strahler order streams on 1:100,000 USGS maps)

throughout the upland portions of the Mid-Atlantic region

(Herlihy and others 2000). The biological, chemical, and

physical habitat sampling of those streams resulted in the

Mid-Atlantic Highlands Streams Assessment (U.S. Envi-

ronmental Protection Agency 2000), the first comprehen-

sive assessment of the ecological condition of streams in

any region using both statistical site selection and biolog-

ical indicators. Sampling for this survey (referred to as

MAHA) continued in 1995 and 1996, and those additional

data are used in this article.

The MAHA survey sampling design defined all 1st

through 3rd Strahler order stream traces shown on

1:100,000 USGS maps, comprising 230,400 km of stream

length, as the statistical target population (Herlihy and

others 2000). A sampling grid was laid over the entire

region, to achieve regional-scale spatial balance. Sites on

all stream traces within 40-km2 areas surrounding the grid

points were used as candidates for sampling. However,

1st-order streams alone comprise 59% of the total length of

all stream traces (Figure 2). Thus, a completely random

sample of sites would be dominated by those on first-order

streams. At the same time, sites on larger streams would be

much less likely to be selected in a completely random

sample, possibly resulting in poor charaterization of large-

stream attributes.

To avoid this problem, the MAHA design employed

unequal probabilities for site selection, based on the stream

orders of candidate sites. This approach provided a more

even distribution of samples among 1st to 3rd order

streams, and it also increased the sample size of larger

streams and rivers relative to that expected from a com-

pletely random sample (Figure 2). In addition, the geo-

graphic density of sample sites was increased within the

North-Central Appalachian and Ridge and Valley ecore-

gions (Figure 1) to better characterize acidic deposition

effects, requiring a further adjustment of site selection

probabilities (Herlihy and others 2000). Once sites were

selected, they were assigned sampling weights that were

proportional to the inverse of their selection probabilities

and were normalized to sum to the total target stream

length. A site’s sampling weight could then be interpreted

as the total length of stream (in kilometers) within the

target population that is represented by that site. Sampling

weights were incorporated into estimates of regional

averages and totals from sample data, thus providing

unbiased estimates of ecological condition indicators for

the statistical population of flowing waters in the Mid-

Atlantic region.

In 1997 and 1998, data collection was expanded to in-

clude all nontidal streams and rivers (all Strahler orders) of

the Mid-Atlantic region (Figure 1). This larger-scale pro-

ject was known as MAIA. Site selection for the 1997–1998

survey used the same strategy as employed in MAHA. A

major emphasis in MAIA was to extend the sampling

methods developed for small streams in MAHA to the

large rivers included in MAIA. The result is a set of

sampling protocols, all based on identical principles and

producing directly comparable information, for all sizes of

streams and rivers (Lazorchak and others 1998, 2000).

These sampling protocols were used for all of the data

collection reported here.

We adjusted the site sampling weights used in MAIA

and MAHA to give an overall assessment of Mid-Atlantic

streams and rivers based on the two surveys combined.

Hereafter, we refer to the overall assessment and its com-

bined data as ‘‘MAIA’’ (Stoddard and others 2006a). The

combined data consists of 773 sites sampled for macroin-

vertebrates and corresponding stressor variables between

1993 and 1998 (Figure 1). Our sampling grid approach

geographically dispersed the selected sites, resulting in

99.9% of the 319,600 straight-line intersite distances in

Figure 1 being greater than 9 km. This degree of site

separation gave us confidence that the potential for spatial

correlation effects was minimized and that sites could be

considered mutually independent for statistical analyses.

Macroinvertebrate Sampling and Index of Biotic

Integrity

Of the 773 sampled sites, 699 were on wadeable (generally

1st through 4th order) streams as described in Lazorchak

and others (1998). Each wadeable stream site’s sampled

reach, equal in length to 40 times the stream’s wetted width

(or a minimum of 150 m), was divided into 11 equally

spaced transects, with one kicknet sample collected from

each of the (9) interior transects (the upstream and down-

stream extremes were not sampled). Separate pool and

Fig. 2 Distributions of stream length for MAHA/MAIA target

population and for sampled sites, by Strahler stream order
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riffle composite samples were created from each stream

reach. All resulting macroinvertebrates were preserved,

and a fixed count of 300 organisms from each composite

sample was identified to the lowest practical taxonomic

resolution, usually genus. Macroinvertebrate samples were

also collected from 74 nonwadeable sites using similar

sampling protocols as applied to the wadeable near-shore

ends of their transects (Lazorchak and others 2000).

We used a benthic Index of Biotic Integrity (IBI) to

measure the condition of each sampled macroinvertebrate

assemblage (Klemm and others 2003; Stoddard and others

2006a). The benthic IBI calculates a score between 0 and

100 for each site, with 100 denoting the best attainable

condition.

Sampling of Stressors

A comprehensive set of chemical and physical stressors

was measured at each site at the same time as biological

indicators were sampled. We used total phosphorus and

total nitrogen concentrations to indicate nutrient stress

(Table 1). Acid neutralizing capacity and sulfate concen-

trations were used to indicate stresses of acid deposition,

mine drainage, and acid mine drainage (Herlihy and others

1990). We also used excess fine sediments, riparian con-

dition, and the lack of large woody debris as physical

habitat stressors (Lazorchak and others 1998; Kaufmann

and others 1999).

Condition Classes for Macroinvertebrate IBI and

Stressors

We defined ‘‘poor,’’ ‘‘marginal,’’ and ‘‘good’’ classes of

stressor or response condition as meaning ‘‘different

from,’’ ‘‘possibly different from,’’ or ‘‘not different

from,’’ respectively, the stressor or response values ex-

pected at least-disturbed reference sites (Reynoldson and

others 1997; Bailey and others 2004; Stoddard and others

Table 1. Thresholds of condition classes for macroinvertebrate IBI and eight stressor indicators

Variable Poora Good

Geographic

restrictionsb Basis for thresholdsc Measurement (units)

Macroinvertebrate IBI < 41 ‡62 None RD (122) Unitless index,

range = [0,100]

Excess sedimentation < –2.0 ‡–1.5 P, CP

ecoregions

BPJ, in P and

CP ecoregions

Log 10 (Relative

bed stability).

Unitless index

< –0.9 ‡–0.3 All other

ecoregions

RD, in all other

ecoregions (42)

Lack of large wood 0 ‡2.2 None RD (50) Percent of wetted

stream area

covered by large

wood

Riparian habitat < 0.5 ‡0.61 None RD Unitless index,

range = [0, 1]

Total nitrogen >1500 £750 CP ecoregion In CP, use criteria from

USEPA (2000).

Total N (lg/L)

>1200 £425 All other

ecoregions

RD, in all other

ecoregions (123)

Total phosphorus >100 £50 CP ecoregion For CP, use criteria

from USEPA (2000).

Total P (lg/L)

>63 £14 All other

ecoregions

RD, for all other

ecoregions (123)

Mine drainage >1000 £400 NCA, WA

ecoregions

BPJ SO4 (leq/L)

>5000 £1000 All other

ecoregions

Acid deposition ANC < 0, and Mine

drainage = ‘‘Good’’d
Mine drainage „

‘‘Good’’, or ANC ‡ 50

None BPJ ANC = Acid

neutralizing

capacity (leq/L)

Acid mine drainage ANC < 0, and Mine

drainage „ ‘‘Good’’d
Mine drainage =

‘‘Good,’’ or ANC ‡ 50

None BPJ ANC = Acid

neutralizing

capacity (leq/L)

aValues lying between the ‘‘Good’’ and ‘‘Poor’’ thresholds define the ‘‘Marginal’’ condition
bEcoregion codes: P = Piedmont, CP = Coastal Plain, NCA = North and Central Appalachians, WA = Western Appalachians
cBPJ = Best professional judgment, RD = Reference distribution, with count of reference sites given in parentheses
dMarginal condition defined as 0 £ ANC < 50 leq/L, with same dependence on mine drainage as for Poor condition
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2006b). Here, we summarize the procedures for setting

class thresholds (Table 1). Full details are given by Stod-

dard and others (2006a).

Whenever possible, thresholds for the condition classes

were based on the distribution of indicator values obtained

in samples from a set of least-disturbed reference sites

(Stoddard and others 2006b). We first identified a separate

set of reference sites for each indicator based on stream and

watershed attributes that suggest minimal human distur-

bance for that indicator. Candidates for reference sites in-

cluded all sites sampled by the MAIA survey, as well as 58

hand-picked sites. For example, reference sites identified

for developing the macroinvertebrate IBI were nonacidic,

with low sulfate, chloride, and nutrient levels, and high

overall habitat quality (Waite and others 2000; Stoddard

and others 2006a). However, to avoid circularity, we did

not use macroinvertebrate IBI scores themselves to help

identify reference sites for the macroinvertebrate IBI. A

similar strategy was employed for most stressors (Stoddard

and others 2006a). For example, we chose reference sites

for the large wood stressor to be those having (a) less than

10% of their watershed area in some combination of urban,

agriculture, or mining land uses, and also (b) riparian

habitat indices greater than 0.8, on a 0–1 scale.

Given a set of reference sites, we defined condition

classes based on quantiles of the distribution of indicator

values at those sites (Stoddard and others 2006a, 2006b). If

higher values of an indicator denoted improved condition

(e.g., amount of large wood), then scores lower than the 1st

percentile of the reference site distribution were classified

as ‘‘poor.’’ Scores between the 1st and 25th percentiles for

reference sites were classified as ‘‘marginal’’, and those

higher than the 25th percentile of reference sites were

classified as ‘‘good.’’ On the other hand, if increased indi-

cator scores denoted worse condition (e.g., phosphorus

concentration), then the ‘‘good’’–‘‘marginal’’ and ‘‘marg-

inal’’–‘‘poor’’ thresholds were set-by the 75th and 99th

percentiles, respectively, of the reference site distribution.

For the acid deposition, mine drainage, and acid mine

drainage stressors, we used acid neutralizing capacity

(ANC) and sulfate (SO4) criteria based on prior research,

rather than reference site distributions, to set thresholds of

condition classes (Herlihy and others 1990, 1991). We first

assigned condition classes for mine drainage, based on

sampled SO4 concentrations in stream water (Table 1). We

then assigned acidification status based on measured values

of ANC. For sites showing evidence of mine drainage

(either marginal or poor condition for this stressor), we

assumed that a sampled value of low ANC (high acidity)

was the result of acid mine drainage, and either poor or

marginal conditions of the acid mine drainage stressor were

assigned depending on ANC (Table 1). Where there was

little or no evidence of mine drainage (mine drainage

condition = ‘‘good’’), a low ANC level was assumed to be

evidence of acid deposition, and the acid deposition

stressor was assigned to be poor or marginal depending on

ANC.

Thresholds for the nitrogen, phosphorus, and sedimen-

tation stressors were determined separately by ecoregions,

to capture strong ecoregional differences in least-disturbed

conditions (Table 1, Figure 1; Omemik 1987; Woods and

others 1996). Moving from left to right in Figure 1, the

Western Appalachians ecoregion has low rounded hills,

low-gradient streams, and extensive wetland areas. In

contrast, the North-Central Appalachian ecoregion is

higher elevation, more rugged, and more forested. The

Ridge and Valley ecoregion consists of a sequence of

limestone or shale valleys running northeast to southwest,

separated by forested ridges. Moving east, the Piedmont

ecoregion is a transition between the higher Appalachians

and the Coastal Plain, and is currently reverting to wood-

land and urban/suburban land use after being widely

cultivated. Finally, the flat Coastal Plain ecoregion has

low-gradient, sandly-bottom streams in landscapes ranging

from marshes to urban areas to woodlands. More detailed

ecoregion descriptions are given by Stoddard and others

(2006a). For some stressors and some ecoregions, such as

nitrogen and phosphorus in the Coastal Plain ecoregion,

suitable reference sites were either rare or nonexistent, and

we instead relied on best professional judgment to set

thresholds (Stoddard and others 2006a, 2006b).

Relative Extent of Poor Condition

We define the relative extent of poor condition as the

total stream length that was found in poor condition,

expressed as a proportion of the total stream length in all

condition classes (good, marginal, or poor). We report the

confidence interval for each extent estimate that would

apply if that single estimate had been made in isolation.

Details of confidence interval estimation are given in the

Appendix.

Relative Risk of Poor Macroinvertebrate Condition

We used relative risk estimates to describe the associations

between macroinvertebrate IBI condition and the condition

of each of the eight stressors. In this section, we define

relative risk and illustrate its estimation by using excess

sediment as an example stressor. A general formulation,

along with methods for estimating confidence intervals, is

given in the Appendix.

The relative risk of poor macroinvertebrate IBI condi-

tion, given poor sediment condition, is defined as a ratio of

conditional probabilities (Lachin 2000; Woolson and

Clarke 2002):

1024 Environ Manage (2006) 38:1020–1030
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R ¼ Pr(poor IBI, given poor sediment condition)

Pr(poor IBI, given good sediment condition)
ð1Þ

The relative risk ratio can be estimated from a contingency

table containing the estimated lengths of streams in various

combinations of IBI and sediment condition (Table 2).

Because sample sites are unequally weighted (see Appen-

dix), the occurrence probabilities of Equation 1 are most

accurately estimated from the length estimates of Table 2,

rather than from the Table’s raw counts of sampled sites

(Rao and Thomas 1988; Lohr 1999).

In estimating relative risk to macroinvertebrates for a

particular stressor (Equation 1 and Table 2), we excluded

all sites that were in marginal condition either for macro-

invertebrate IBI or for that stressor. We did this because

our classes of ‘‘good,’’ ‘‘marginal,’’ and ‘‘poor’’ are dis-

cretizations of inherently continuous gradients of stressor

and biotic condition, so that sites on either side of, and

close to, a condition class boundary may have quite small

differences in actual condition. By contrasting only

‘‘poor’’ and ‘‘good’’ condition classes, we ensure that

there is little or no overlap in actual condition between sites

assigned to the two classes. In addition, our relative risk

estimates are based on the two extremes of class condi-

tions, good and poor, and should thus represent the largest

observed severities of stressor effects.

We now illustrate the calculation of relative risk for the

data in Table 2. The probability, or ‘‘risk,’’ of finding poor

rather than good macroinvertebrate IBI condition, given

that sites have poor sediment conditions, is estimated

by the proportion of those streams with poor sediment

that also had poor IBI. From Table 2, that proportion is

27,680/(3930 + 27,680) = 0.876. Likewise, the risk of

finding poor rather than good IBI in streams, given that

they had good sediment conditions, is estimated by 27,450/

(22,700 + 21,450) = 0.547. Thus, poor IBI conditions had a

greater risk of occurring when sediment conditions were

poor (risk = 0.876) than when sediment conditions were

good (risk = 0.547). Relative risk expresses this relation-

ship as the ratio R = 0.876/0.547 = 1.60 (Equation 1). In

summary, a poor (rather than good) macroinvertebrate IBI

score was estimated as 1.60 times more likely to occur in

streams having poor sediment condition than in streams

having good sediment condition.

A relative risk of 1.0 denotes independence between

stressor and response classes. That is, if R = 1.0, then poor

IBI condition is just as likely to occur under poor sediment

conditions as it is under good sediment conditions. A 90%

confidence interval for the sediment–macroinvertbrate

relative risk is (1.11, 2.30) (see Appendix for methods).

This confidence interval does not include 1.0, giving us

statistical evidence that the risk of poor IBI in the stream

population is indeed elevated in poor-sediment streams, as

compared with good-sediment streams.

Correlated Stressors

If two or more stressors are strongly correlated, then their

effects are confounded and cannot be clearly assessed by a

bivariate association measure such as relative risk. To ex-

plore this potential problem, we estimated a correlation

matrix for the categorical stressor variables in Table 1. We

calculated the product-moment correlation, r, between each

pair of stressor variables after receding their ‘‘poor’’ and

‘‘good’’ classes to 1’s and 0’s (Bishop and others 1975).

This correlation between binary variables, also known as

Cramer’s F coefficient (Zar 1999), has the same interpre-

tation as a conventional correlation coefficient. We incor-

porated sampling weights into our estimates of r (Sarndal

and others 1992).

Results

The estimated product-moment correlation between nitro-

gen and phosphorus stressor classes was 0.58, and the

estimate for large wood versus riparian habitat was 0.48.

These correlations are high enough to indicate some con-

founding between stressors. Thus, we interpret nitrogen

and phosphorus stressor results together as a generalized

nutrient loading effect, and we also interpret large wood

and riparian habitat results together, All other pairs of

stressors had correlation magnitudes less than 0.24, sug-

gesting little confounding, so that their relative risks could

be directly compared.

Only 26% of Mid-Atlantic stream length was estimated

to be in good condition for macroinvertebrate IBI, with

another 37% that was marginal (Figure 3). For stressors

representing physical habitat (sedimentation, lack of large

wood, and riparian habitat) and nutrient loading (phos-

phorus and nitrogen), between 40% and 57% of stream

length was estimated to be in good condition. With be-

tween 90% and 99% of stream length estimated in either

good or marginal stressor conditions, serious mining and

Table 2. Estimated lengths of stream (km) and sampled site counts

(in parentheses), for combinations of good and poor

macroinvertebrate IBI and sediment condition

Sedimentation condition

Macroinvertebrate IBI condition Good Poor

Good 22,700 3,930

(78) (8)

Poor 27,450 27,680

(50) (55)
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acidification impacts were relatively rare across the entire

population of Mid-Atlantic streams (Figure 3).

The relative importance of stressors can be more fully

assessed by estimating their relative risks for macroinver-

tebrates and comparing these risks with each other and with

stressor extent estimates (Figure 4). Poor conditions of

mine drainage, acid deposition, and acid mine drainage

occurred in only a small proportion of Mid-Atlantic

streams. However, where these stressors were in poor

condition, they all showed significant relative risks for

macroinvertebrates (Figure 4). Poor conditions of large

woody debris, riparian habitat, nitrogen, and phosphorus

occurred in 14–26% of streams. Although these four stres-

sors had estimated relative risks ‡1, their confidence

intervals for relative risk included 1.0, suggesting that their

associations with poor macroinvertebrate condition were

weak, at best. Overall, excess sedimentation appears to be

the stressor of greatest concern for macroinvertebrates, with

the highest estimated relative extent of poor condition (28%

of streams) and an estimated relative risk of 1.60 (Figure 4).

Discussion

We believe that relative risk is a simple and interpretable

measure of severity for a stressor’s effect. Figure 4 illus-

trates the complementary roles of relative extent and rel-

ative risk in assessing stream ecological conditions at a

regional scale. Based only on their relative extents of poor

condition, one would conclude that physical features of

stream habitat, such as sedimentation, riparian habitat, and

large wood, are the most prevalent, and hence most

important, stressors in Mid-Atlantic streams. Likewise,

acidification and mining effects might be viewed as neg-

ligible because poor conditions of these stressors occur in

so few streams. However, these conclusions may be altered

if one considers both stressor severity and extent, where

severity is measured by relative risk to macroinvertebrates.

Among the three physical habitat stressors, only sedimen-

tation had a relative risk that clearly exceeded 1.0. Al-

though poor mining and acidification conditions are rare,

when they do occur their relative risk to macroinvertebrates

is significant, exceeding all other stressors except sedi-

mentation. Based on both its severity of effect and its ex-

tent, sedimentation appears to be the stressor of overall

greatest concern for macroinvertebrates.

We emphasize that the relative risks estimates of Fig-

ure 4 pertain only to an IBI for aquatic macroinvertebrate

assemblages. Stoddard and others (2006a) also developed

IBI’s for fish and periphyton assemblages sampled during

the MAHA/MAIA surveys, at the same sites and times as

macroinvertebrates. The reference-condition approach was

again used to classify periphyton and fish IBI scores as either

‘‘good,’’ ‘‘marginal,’’ or ‘‘poor.’’ Unlike the risks to

macroinvertebrates, relative risks to fish IBI were highest for

nutrients, lack of large wood, and acidic stressors (acid

deposition and acid mine drainage), whereas the sedimen-

tation risk was very near 1.0 (Stoddard and others 2006a).

The periphyton IBI also had high relative risks from nutri-

ents (>2.5), and its sedimentation risk was 1.5, whereas all

other stressors showed nonsignificant relative risks. These

results support the expectation that different components of

stream ecosystems (fish, macroinvertebrates, and periphy-

ton) would respond differently to various aquatic stressors.

Alternative Risk-Based Measures of Stressor Effect

Alternatives to relative risk are available for measuring an

association between dichotomous stressors and a response.

Because Environmental Monitoring and Assement Pro-

gram surveys are cross-sectional sampling designs, as

opposed to retrospective or prospective designs, the con-

ditional and unconditional probabilities underlying these

alternatives can be estimated without bias from the basic

contingency table in Table 2 (Ramsey and Schafer 1997;

Lachin 2000; Woolson and Clarke 2002).

For example, an odds ratio is similar to a relative risk

ratio, except that the numerator and denominator are ex-

pressed as the odds, rather than the risk, of poor IBI,

Fig. 3 Estimated extents of good, marginal, and poor-condition

streams, for macroinvertebrate IBI and eight stressors. Error bars

denote 90% confidence intervals for a single estimate of extent

1026 Environ Manage (2006) 38:1020–1030

123



conditional on poor (numerator) or good (denominator)

stressor condition. The odds of poor IBI is defined as the

probability (i.e., risk) of poor IBI condition, divided by the

probability of good IBI condition (Agresti 1990; Woolson

and Clarke 2002). For our Table 2 example, the estimated

odds of poor IBI condition in poor-sedimentation streams

is calculated as (27,680/(3930 + 27,680))/(3930/(3930 +

27,680)) = 27,680/3930 = 7.04. That is, poor IBI is 7.04

times more likely than good IBI to be found in poor-sed-

iment streams. Similarly, the odds of finding poor, rather

than good, IBI in good-sediment streams is given by

27,450/22,700 = 1.21. The odds ratio, given by 7.04/1.21 =

5.81, then expresses how much greater is the odds of

finding poor IBI in streams with poor, rather than good,

sediment conditions. We prefer using the relative risk ratio

because we believe that, for most people, the risk, or

probability, of an event occurring is easier to understand

than the odds of an event occurring.

As a second example, the absolute conditional risks that

appear in the numerator and denominator of the relative risk

ratio may be individually informative. If all sampled sites

having poor sediment condition were to be included in its

estimate, then the numerator risk of Equation 1 would be the

regional extent of stream length with poor IBI, conditional

on streams also having poor sediment conditions. The rel-

ative risk denominator has a similar interpretation of con-

ditional extent. For our particular application, however,

these useful interpretations are not valid because we ex-

cluded sites with marginal IBI and/or marginal stressor

conditions when estimating absolute and relative risks.

A single absolute risk appears easier to interpret than a

ratio of two risks. Thus, one may be tempted to interpret

the relative risk numerator, by itself, as a measure of

stressor severity. However, a single absolute risk may give

a misleading picture of severity, because, by definition, an

‘‘effect’’ can only be produced by a change in stressor

intensity, e.g., from good to poor condition. The only

reliable way to quantify that effect is to measure the change

in the response as a function of the change in the stressor.

For this reason, the starting point in the design of human

epidemiological studies is the comparison of two groups of

people: those experiencing a ‘‘risk factor’’ (i.e., stressor),

and those who are free of it. Thus, the severity of effect for

a risk factor can be accurately assessed only by comparing

two risks, using either a difference or a ratio (Dunn and

Everitt 1995; Lachin 2000; Woolson and Clarke 2002).

Other variations on relative risk may be useful. For

example, by reversing the roles of stressor and response

variables in Table 2, one could estimate the risk of

observing poor, rather than good, sediment conditions in

streams with poor IBI conditions, relative to that risk in

streams with good IBI conditions. It is also possible to

carry out chi-squared tests of independence for contin-

gency tables, employing specialized methods to account for

unequal sampling probabilities (Rao and Thomas 1988;

Lohr 1999). We recommend that contingency tables be

made available whenever reporting relative risks, to enable

estimation of alternative risk-based measures.

Interpreting Relative Risk

Our proposed application of relative risks should be

interpreted carefully, for at least three reasons, First,

comparisons of relative risks must recognize that ‘‘poor’’

Fig. 4 Estimated relative extent

of poor stressor condition (left

panel), and the estimated

relative risk of poor

macroinvertebrate IBI condition

under poor stressor condition

(right panel). Error bars denote

single-estimate 90% confidence

intervals for extent and

Bonferroni-corrected 90%

confidence intervals for relative

risk. Vertical line denotes the

‘‘No association’’ value (1.0)

for relative risk
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and ‘‘good’’ conditions do not have identical meanings for

all stressors or responses. In our MAIA example, we em-

ployed a unique set of thresholds to define the condition

classes for each stressor and response. In addition, those

thresholds were determined using best professional judg-

ment for some stressors, and using quantiles of reference-

site distributions for others. Regardless of how we deter-

mined the class thresholds, our objective was to define

stressor or response levels near or beyond the extremes of

the distributions at reference sites as denoting ‘‘poor’’

conditions. It is in this restricted and approximate sense

that our ‘‘poor’’ conditions can be interpreted as a common

currency across stressors.

Secondly, if stressors are correlated, then their individ-

ual effects cannot entirely be teased apart, and relative risk

estimates may give a misleading picture of their relative

effect severities. We addressed this problem by calculating

correlations between all pairs of stressor variables and then

interpreting relative risks for moderately-to-highly-corre-

lated stressors as representing confounded effects. Alter-

natively, one could model the joint effects of several

categorical stressors on a categorical response, using

multiple logistic regression or multiway contingency tables

(Bishop and others 1975, Agresti 1990). In principle, the

standardized partial effect of a stressor within such a model

can measure its relative importance. However, in the

presence of strong multicollinearity, estimated partial

regression effects can, like relative risk, give a misleading

assessment of stressor importance (Neter and others 1990,

Montgomery and others 2001).

Thirdly, for many people the language of ‘‘relative

risk’’ implicitly asserts a causal link between stressor and

response. We recognize that monitoring efforts such as the

MAIA survey provide associational data, which, by itself,

does not give conclusive evidence of causality (U.S. EPA

1998, Shipley 2000, Adams 2003), Thus, in applying the

relative risk approach, we have been careful to say that

poor stressor and poor biota conditions tend to be ‘‘found’’

or to ‘‘occur’’ in the streams, emphasizing that our relative

risk estimates are strictly associational. However, we also

believe that analyses of associations based on monitoring

data, combined with conceptual models and other evidence

for or against competing causal mechanisms, can offer

strong inferences regarding likely causes. We encourage

potential users of the relative risk approach to be aware of

the causality issue, and to recognize that a well-designed

monitoring program can provide strong, albeit not con-

clusive, evidence about causes of ecosystem impairment.

Finally, whether one focuses on relative extent, relative

risk, or a combination of the two depends, in part, on the

management or policy question being addressed. If the

management question is on decisions about a specific site,

then relative risk would be an appropriate focus. If one is

more interested in which stressors should be the focus of

policy for a region or the nation with the intent of pro-

ducing the greatest improvement in length of streams in

good biological condition, then using both relative extent

and relative risk is more appropriate.
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Appendix: Standard Errors and Confidence Intervals

for Relative Risk and Relative Extent

Estimating Relative Risk and Its Standard Error

From quantities in Table A1, relative risk is estimated

as:

R ¼ T2=T4

T1=T3

ðA1Þ

We used large-sample approximations to estimate standard

errors and construct confidence intervals for R. Because the

domain of log(R) is symmetric about the no-association

value of log(1.0), and confidence bounds on log(R) cannot

escape that domain, we estimated standard errors and

resulting confidence intervals on the log-transformed scale

(Lachin 2000). From Equation A1, log(R) is given by:

log Rð Þ ¼ log T2ð Þ � log T4ð Þ � log T1ð Þ þ log T3ð Þ ðA2Þ

The variance of log(R) can be estimated by applying first-

order Taylor linearization to each term on the right-hand

side of Equation A2 to give (Sarndal and others 1992):

Var log Rð Þ½ � ¼
X4

i¼1

a2
i Var Tið Þ þ 2

X4

i¼1

X

j\i

aiajCov Ti; Tj
� �

ðA3Þ

where ai = � @ log Tð Þ½ �
@Ti

¼ � 1
Ti

. The exact sign on 1/Ti is equal

to the sign on the ith term in Equation A2, and partial

derivatives are evaluated at point estimates of Ti.

If a simple random sampling design is employed, then

the probability that a site is sampled is equal for all sites,

and the inclusion of any site in the sample is independent of

which other sites are sampled. In this case, the quantities in
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Table A1 and Equation A1 are raw site counts or their

sums. The estimated variance of log(R) reduces to (Lachin

2000, Woolson and Clarke 2002):

Var log Rð Þ½ � ¼ A
T1T3

þ B
T2T4

ðA4Þ

Alternatively, if sample inclusion probabilities for sites are

not equal, as in the MAIA and other EMAP surveys, then

cell entries in Table A1 are stream lengths, estimated by

summing the sampling weights for all sampled sites in each

cell (Stehman and Overton 1994, Lohr 1999). For this case,

we used Horvitz-Thompson estimators of the variances and

covariances in Equation A3, because of their applicability

to any unequal-probability sampling design (Sarndal and

others 1992, Stevens and Olsen 2003). In applying the

Horvitz-Thompson estimators, we assumed that sites were

independently and randomly sampled, so that pairwise joint

inclusion probabilities are directly proportional to the

product of the individual inclusion probabilities (Stevens

and Olsen 2003). For spatially balanced survey designs, it

is possible to reduce the magnitudes of variance and

covariance terms in Equation A4 by using local neigh-

borhood information in their estimation rather than the

Horvitz-Thompson method (Stevens and Olsen 2003).

Confidence Intervals

Given an estimate of the standard error, SElogR =

�(Var[log(R)]), Normal distribution theory was used to

construct a large-sample confidence interval (CI) for

log(R) (Lachin 2000). Specifically, a two-sided CI at the

100*(l–a) percent confidence level is given by log(R) ±

Z(1–a/2)(SElogR), where Z denotes a percentile of the

standard normal distribution. We applied a Bonferroni

correction when computing multiple, nonindependent CIs

on the relative risks between macroinvertebrate IBI and

several stressors. For a family of K confidence intervals,

a familywise confidence level of 100*(l–a) percent is

obtained by using the [1–a/(2K)] percentile of Z (Ramsey

and Schafer 1997). Endpoints of a CI on log(R) were

back-transformed to give a CI for R itself. Because the

back-transformation is nonlinear, a two-sided CI on the

relative risk scale is not symmetric about the point

estimate of R.

Stressor Extent

The estimated relative extent of poor stressor condition is a

ratio of two totals—the total estimated stream length in

poor stressor condition, and the overall total estimated

length of streams. Each total was calculated by summing

the weights of sampled streams. We approximated the

standard error for stressor extent using Taylor linearization

and Horvitz-Thompson estimation, by following steps

similar to those given above for relative risk but omitting

the logarithmic transformation (Sarndal and others 1992).

Free, R-language software (Ihaka and Gentleman 1996)

for calculating relative risk and extent estimates, and their

confidence intervals, from unequal-probability survey data

is included in the psurvey.analysis package (available at

http://www.epa.gov/nheerl/arm/).
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