NASS RIVER STEELHEAD HABITAT CAPABILITY PRODUCTION MODEL AND PRELIMINARY ESCAPEMENT GOALS

for

Ministry of Water, Land and Air Protection PO Box 5000, 3726 Alfred Avenue, Smithers, BC V0J 2N0

February 2005

Skeena Fisheries Report # SK 142

NASS RIVER STEELHEAD HABITAT CAPABILITY PRODUCTION MODEL AND PRELIMINARY ESCAPEMENT GOALS

by

R.C. Bocking¹, C.K. Parken² and D.Y.Atagi³

¹LGL Limited environmental research associates 9768 Second Street, Sidney, BC V8L 3Y8

²Department of Fisheries and Oceans Pacific Biological Station Nanaimo, BC

³Ministry of Water, Land and Air Protection Skeena Region PO Box 5000, 3726 Alfred Avenue, Smithers, BC V0J 2N0

for

Ministry of Water, Land and Air Protection Skeena Region, PO Box 5000, 3726 Alfred Avenue, Smithers, BC V0J 2N0

February 2005

TABLE OF CONTENTS

LIST OF TABLES	ii
LIST OF FIGURES	
LIST OF APPENDICES	
ACKNOWLEDGEMENTS	iv
EXECUTIVE SUMMARY	v
INTRODUCTION	1
STUDY AREA	1
EMPIRICAL DATA	3
Stream Order	3
Stream Gradient	3
Mean Annual Discharge	3
Mean Smolt Age	
Female Length	9
Alkalinity	
MODEL DESCRIPTION	. 12
Juvenile Steelhead Distributions	
Accessible Length	
Stream Width	
Useable Area	
Smolt Yield	. 15
Escapement Required	
RESULTS	
Smolt Capacity	
Required Escapement	
Sensitivity Analyses	
Preliminary Escapement Goals	
DISCUSSION	
Physical Parameters of Model	
Life-History Parameters of Model	
RECOMMENDATIONS	
LITERATURE CITED	

LIST OF TABLES

Table 1	Water Survey of Canada Stations used in the Nass steelhead model.
Table 2	The mean and standard deviation (SD) in smolt age for steelhead from the Bell- Irving, Cranberry, Ishkheenickh, Kincolith, Kwinageese, Meziadin, Tseax and upper Nass rivers, Damdochax and Chambers creeks, Nass River fishwheels, Nisga'a fishery catch monitoring program and all winter steelhead pooled.
Table 3	The mean, range and sample size (n) of circuli counted from the scale focus to the first annulus for adult steelhead from the Bell-Irving, Cranberry, Kincolith, Kwinageese, Meziadin, Tseax and upper Nass rivers, Damdochax Creek, Nass River fishwheels, Nisga'a catch monitoring program and all winter steelhead pooled.
Table 4	The beginning date, end date, and growing season length in 1998 and the estimated mean smolt age (MSA).
Table 5	The mean and standard deviation (SD) in female length for steelhead in the Bell- Irving, Cranberry, Ishkheenickh, Kincolith, Kwinageese, Meziadin Tseax and upper Nass rivers, Damdochax Creek, Nass River fishwheels, Nisga'a fishery catch monitoring program and all winter steelhead pooled
Table 6	The total alkalinity estimated from water samples collected during summer low flow period, stream conductivity measured during summer low flow period, and water yield.
Table 7	Estimates of smolt productive capacity using 6 different models.
Table 8	Estimates of required number of spawners to fully seed available habitat.
Table 9	The stock-specific productivity (Beverton-Holt's A value) for major steelhead systems in the Nass River.
Table 10	Asymptotic maximum smolt and adult production estimates for Nass River steelhead.
Table 11	The number of required spawners at MSY, using the Simple Management Rule of 35%, and the Model 6 habitat model.
Table 12	Steelhead spawner requirements, as a percentage of the maximum asymptotic adult production for the stock recruitment method, simple management rule, and the fully-seeded rearing habitat method (confirmed systems only).

LIST OF FIGURES

Figure 1	Map of Nass River and major tributaries.
Figure 2	The relationship between circuli counts from the scale focus to the scale margin and fork length of age 0 steelhead from the Bell-Irving, Kwinageese, Cranberry, and Tseax rivers and all samples pooled.
Figure 3	Distribution of winter run steelhead among the major tributary producers in the Lower Nass.
Figure 4	Distribution of summer run steelhead among the major tributary producers in the Upper Nass
Figure 5	Relationship between measured stream width and predicted stream width for Nass River steelhead systems.
Figure 6	Results of sensitivity analyses.

LIST OF APPENDICES

APPENDIX A	Calculation of mean annual discharge for Nass River sub-watersheds.
APPENDIX B	Known and predicted (suspected) steelhead producing tributaries in the Nass Watershed.
APPENDIX C	Listing of known barriers to steelhead within the Nass drainage.
APPENDIX D	Accessible length of stream less than 8% gradient for third order or greater watersheds within the Nass watershed.
APPENDIX E	Predicted width, by stream order for Nass watersheds.
APPENDIX F	Theoretical useable width and useable area for Nass watersheds.
APPENDIX G	Table of productivity adjustment factors for models 5 and 6 using methods of Tautz et al (1992).
APPENDIX H	Smolt productivity estimates using six different models for Nass River steelhead.
APPENDIX I	Estimate of the required number of steelhead spawners to fully seed the available fry habitat.

ACKNOWLEDGMENTS

A number of people contributed to the completion of this model and report. Ron Ptolemy of WLAP provided valuable reviews of the model. Contributors to the analysis of data included Russ Frith, Lucia Ferreira and Ellen Hines. Robin Tamasi of LGL organized the base layers and conducted the gradient analysis. Peter Wainwright, also of LGL, developed the stream order algorithm.

Components of this work were largely funded through monies and inkind contributions provided by the Province of British Columbia, Fisheries Renewal, and Nisga'a Lisims Government.

EXECUTIVE SUMMARY

This report describes a habitat-based steelhead production model for the Nass watershed and presents the results for 63 sub-basin watersheds of 3rd order size or greater (1:20,000 mapping). The primary objective was to develop a habitat-based method for estimating smolt production capacity and spawning potential of Nass River tributary streams based on watershed features, physical habitat data, and biological production parameters. The model predicts the amount of suitable habitat available to support juvenile (fry) steelhead for rearing and converts these habitat estimates into production estimates for smolts and minimum escapement levels required to fully seed the available habitat. The watersheds studied include 26 winter steelhead populations systems, 34 summer population systems, and two sympatric systems.

The model was run for accessible area of 4th order or larger streams (4th order model) as well as for 3rd order or larger streams (3rd order model). Six different models were used to estimate the number of smolts at stream carrying capacity (based on the amount of useable length or area for fry). Three of the models used carrying capacity estimates of smolt production for the Keogh River, on northern Vancouver Island; and three used carrying capacity estimates of smolt production for the Cranberry River, a Nass summer run steelhead tributary.

Including just 4th order or larger tributaries, smolt production estimates for all confirmed steelhead habitat in the winter population systems ranged from 17,774 to 55,266 for the six different models. Smolt production estimates for all confirmed habitats for the sympatric populations ranged from 2,759 to 9,891. Smolt production estimates for all confirmed habitats for the summer populations ranged from 86,417 to 248,272.

Using the Model 6 smolt production estimate (Adjusted Areas Model), and only including tributaries for which steelhead are known to be present, the required number of winter run spawners to fully seed fry habitat in the lower Nass River tributaries was estimated to be 1,204. For the sympatric populations, the required number of spawners was estimated to be 310. The estimated required number of spawners for the summer populations with confirmed steelhead presence was 12,386 which is within the range of recent mark-recapture estimates of this aggregate of summer stocks for the period 1997-2001.

The model was particularly sensitive to alkalinity, mean smolt age, and egg-to-fry survival estimates.

INTRODUCTION

The need to establish escapement goals is fundamental to wild stock conservation and sustainability of steelhead (*Oncorhyncus mykiss*) fisheries in British Columbia. The Nisga'a Final Agreement includes a commitment to define the Nisga'a entitlement for Nass summer-run steelhead. Some of the critical information required to negotiate this entitlement has been collected during the last ten years through Nisga'a catch monitoring and escapement estimation programs as well as provincial assessment programs. However, there remains considerable uncertainty regarding the escapement goal for Nass steelhead. The inherent difficulties in obtaining direct estimates of juvenile steelhead production, catch estimates and escapements on a stock-specific basis preclude the use of a stock recruit approach to estimating carrying capacity and escapement goals. The alternative approach entails quantifying the amount of steelhead rearing habitat available and using estimates of biological parameters to determine carrying capacity (Tautz et al. 1992). This report describes a habitat-based steelhead capability production model for the Nass watershed and presents the results for 63 sub-basin watersheds. The model also predicts the required number of spawners to fully seed the available habitat.

The primary objective of this project was to develop a habitat-based method for estimating smolt production capacity of Nass River tributary streams based on watershed features, physical habitat data, and biological production parameters. The model predicts the amount of suitable habitat available to support juvenile (fry) steelhead for rearing and converts these habitat estimates into production estimates for smolts and minimum escapement levels required for the maximum smolt yield. The results of habitat-based models are highly sensitive to the relationships and parameters used to estimate maximum smolt yields from habitat and back-calculate spawner requirements from smolt yield. However, these models provide a means to quantify the production potential for a wide range of stream systems, identifying areas with high production potential and focusing field data collection activities.

Results are presented for 63 tributaries to the Nass River, including the upper Nass mainstem above Damdochax. Only major tributaries of stream order 3 or greater were included. Although steelhead presence is not confirmed for many of the smaller Nass River tributaries, few were excluded from the model. Rather, the model allows for inclusion of those systems that are later confirmed to be steelhead-bearing streams.

STUDY AREA

The Nass River originates in the Skeena Mountains of northwestern British Columbia and flows southwest for approximately 400 km into Portland Inlet (Figure 1). The Nass River drainage is roughly 25,000 km² with a mean annual discharge (MAD) of over 779 m³s⁻¹ at the Shumal Water Survey of Canada (WSC) gauge near Gitwinksihlkw. There are numerous salmonid-bearing tributaries to the main Nass River.

The Nass watershed encompasses two ecoprovinces (Coastal Mountains and Sub-Boreal Interior) and contains six biogeoclimatic zones: Alpine Tundra, Sub-Boreal Spruce, Engelmann

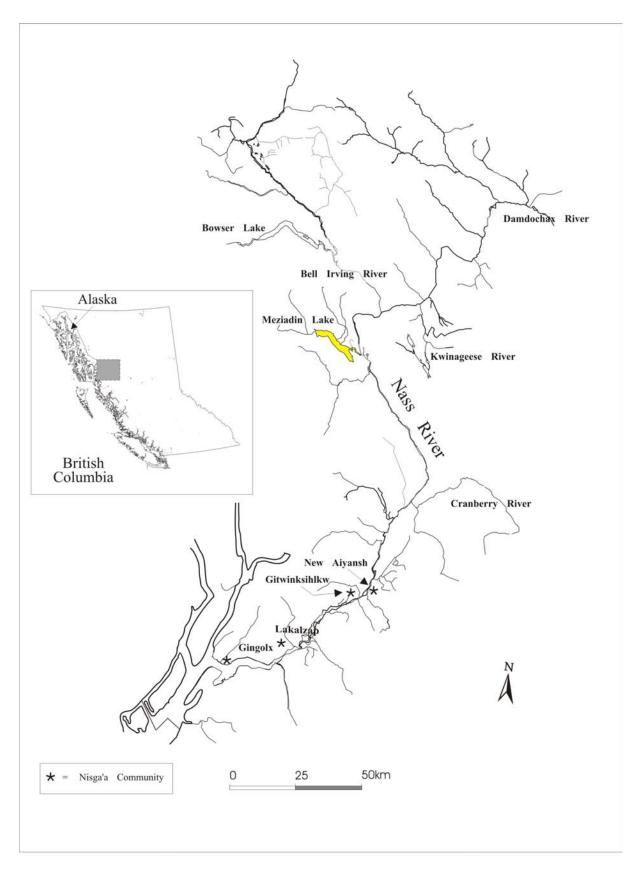


Figure 1. Map of Nass River and major tributaries.

Spruce-Subalpine Fir, Interior Cedar-Hemlock, Mountain Hemlock, and Coastal Western Hemlock (Pojar et al. 1987).

There are both winter and summer run stocks of steelhead in the Nass River drainage. Summer run stocks utilize tributaries to the Nass River upstream of the canyon at Gitwinksihlkw. Winter run stocks utilize tributaries to the Nass River downstream of the canyon at Grease Harbour (approximately 20 km upstream of Gitwinksihlkw). The Tseax River and Seaskinnish Creek have overlapping runs of both winter and summer steelhead and they are referred to as sympatric steelhead populations in the remainder of this document. All steelhead in the Nass watershed are of wild origin and no hatchery propogation or production occurs there.

EMPIRICAL DATA

Stream Order

Stream orders were determined using a method developed by Horton (1945) and later modified by Strahler (1957) and were determined from the BC Terrain Resource Information Management (TRIM) digital mapping (1:20000 scale).

Stream Gradient

Stream gradients were determined from 1:20000 TRIM. To facilitate later sensitivity analyses, the gradient output from the GIS analysis was stratified into 2% gradient bins, from 0% to 12%. We set the maximum gradient useable by steelhead juveniles at 8%.

Mean Annual Discharge

Limited data exists for system-specific estimates of MAD in the Nass River drainage (Parken 1997a). There are only four WSC stations with records. These are for the Nass River itself at Shumal Creek, the Bell-Irving River below Bowser, Surprise Creek, and Craven Creek. Therefore, to estimate tributary-specific MAD, we determined biogeoclimatic zone classifications for all Nass River tributaries, Skeena River tributaries, and one station in Portland Canal (Lime Creek) with WSC records for MAD (Table 1). Estimates from two reference stations were derived for each Nass tributary and in all cases the larger of the two estimates was used in the model (Appendix A). Mean Annual Discharge from the Shumal station was used to estimate MAD for all Upper Nass tributaries above Shumal.

The formula used to calculate MAD for ungauged watersheds within each biogeoclimatic zone from MAD for gauged watersheds in the same biogeoclimatic zone was:

$$MAD_u = WAREA_u \bullet \frac{MAD_g}{WAREA_g} \tag{1}$$

where the subscript u denotes ungauged watersheds and the subscript g denotes gauged watersheds.

Station name	Watershed	Station Number	Latitude	Longitude	Drainage Area (km ²)	MAD (m3/s)	Years monitored (n)	Biogeo-climatic Zones
Nass River	Nass River	08DB001	56 15 50N	129 05 10W	18500	781.0	1930-1995	ICH/MC
at Shumal							(42)	
Bell-Irving	Bell-Irving	08DA010	56 16 45N	129 08 40W	5160	288.7	1989-1995	ICHvc/ESSF
at Bowser							(6)	
Surprise	Meziadin	08DA005	56 06 35N	129 28 33W	221	15.01	1968-1995	ICHvc/ESSF
	River						(27)	
Lime	Lime Creek	08DB010	55 27 15N	129 28 48W	39.4	1.81	1977-1995	CWHws
							(15)	
Patsey	Patsey	08DB012	55 25 08N	129 24 57W	4.68	0.225	1988-1995	MH
5	Creek						(8)	
Kispiox	Kispiox R.	08EB004	55 28 00N	127 44 31W	1870	45.03	1967-1955	ICHmc/ESSF
1	1						(29)	
Kitsum	Kitsum	08EG006	54 34 55N	126 39 37W	2180	123.25	1931-1949	CWHws
kalum	kalum R.						(4)	
Zymagotitz	Zymagotitz	08EG011	54 31 07N	128 43 40W	376	23.72	1961-1994	CWHws
							(34)	
Exchamsiks	Exchamsiks	08EG012	54 21 47N	129 18 41W	370	43.27	1965-1995	CWHvm
						,	(31)	
Chatham S.	Union	08DB002	54 38 45N	130 15 45W	60.3	7.2	1930 (1)	CWHvh
0.	Creek						(1)	

Table 1. Water Survey of Canada Stations used in the Nass steelhead model.

Mean Smolt Age

Parken (1997b) summarized mean smolt ages for Nass River steelhead populations up to December, 1997. Additional scale samples were collected in 1998. Mean smolt age (MSA) used in the production model were calculated using all data (Table 2).

Table 2. The mean and standard deviation (SD) in smolt age for steelhead from the Bell-Irving, Cranberry, Ishkheenickh, Kincolith, Kwinageese, Meziadin, Tseax and upper Nass rivers, Damdochax and Chambers creeks, Nass River fishwheels, Nisga'a fishery catch monitoring program and all winter steelhead pooled.

	Smolt age				
Population	Mean	SD (yr.)	Sample		
	(yr.)		size		
Summer populations					
Bell-Irving	3.35	0.61	115		
Cranberry	3.48	0.57	368		
Damdochax	3.55	0.57	113		
Kwinageese	3.47	0.58	143		
Meziadin	3.43	0.67	61		
Upper Nass River	3.52	0.59	25		
Pooled summer steelhead					
Fishwheels $(1996-98)^1$	3.41	0.59	1,121		
Sympatric populations					
Tseax ¹ ,	3.25	0.44	28		
Winter populations					
Chambers	3.18	0.38	40		
Ishkheenickh	3.32	0.47	44		
Kincolith ¹	3.46	0.61	52		
Pooled winter steelhead					
Catch monitoring ¹	3.38	0.50	26		
All winter steelhead	3.34	0.51	162		
pooled ¹					

¹ Includes data collected by the Nisga'a Fisheries Program.

Smolt ages interpreted from adult steelhead scales were suspected to underestimate the actual smolt age because some steelhead were suspected to be under-aged (Tautz et al. 1992; Parken 1998). The scales were suspected to be under-aged because the first-year annulus may be indistinguishable on fish that form few circuli before the end of the first growing season and thus the first observed annulus represents the second winter (Jensen and Johnsen 1982; Hooton et al. 1987). These fish were identified by high circuli counts to the first observed annulus. Similar to circuli counts, scale formation was dependent on fish size (Clutter and Whitesel 1956; Jensen and Johnsen 1982; Lentsch and Griffith 1987) and for fish that do not grow large enough to form scales during the first-year, the first observed annulus represented age-2 and not age-1 (Jensen and Johnsen 1982; Hooton et al. 1987). Investigations in 1998 found the lack of scale

formation on small (<45 mm) age-0 steelhead, but the analyses are incomplete at this time (Parken 1998).

The percentage of fish with an indistinguishable first-year annulus was estimated first by predicting the maximum number of circuli a steelhead would form in its first year (C1). Second, adult steelhead scales were examined and the circuli were counted to the first observed annulus. Next, the percentage of adult steelhead that exceeded the maximum expected circuli count was determined (Jensen and Johnsen 1982; Lentsch and Griffith 1987; Parken 1998). The percentage of adult steelhead that exceeded the C1 criteria was the percentage of steelhead under-aged by one year. Thus, if 17% of the adult steelhead exceeded the C1 criteria, then 0.17 years were added to the MSA. This method of adjusting smolt ages does not account for steelhead that do not form scales during the first year.

Relationships were developed between the number of circuli from the scale focus to scale margin and fork length of age-0 steelhead from the Bell-Irving, Cranberry, Kwinageese and Tseax rivers and all samples pooled (Figure 2). The number of circuli was predicted for a 70 mm steelhead (C1), which was the maximum size assumed for a Nass River age-0 steelhead near the end of the growing season (Parken 1998). Age-0 steelhead larger than 70 mm, were collected from the Bell-Irving River, Kwinageese River and Damdochax Creek and they were assumed to be missing the first-year annulus (Triton 1994a, b; Saimoto and Saimoto 1998; Parken 1998).

The predicted maximum number of circuli formed during the first year ranged from eight in the Bell-Irving and Tseax rivers to 11 in the Kwinageese River (Figure 2). Lidstone (1999) suspected that Nass River steelhead scales with 10 or more circuli to the first observed annulus may be lacking the first-year annulus, based on the reading of juvenile and adult steelhead scales in 1997 and 1998. The number of circuli to the first observed annulus was determined for adult steelhead from the Bell-Irving, Cranberry, Kincolith, Kwinageese, Meziadin, Tseax and upper Nass rivers, Damdochax Creek, Nass River fishwheels, Nisga'a catch monitoring program and all winter steelhead pooled (Table 3). For adult steelhead aged in 1997 and 1998, zero (upper Nass River) to 50% (Tseax River) of adult steelhead had circuli counts to the first observed annulus that exceeded the predicted maximum (C1; Table 3).

Mean smolt age was also estimated from the growing season length with a model developed by Tautz et al. (1992) for Skeena River summer steelhead (Table 4). The length of the growing season was the number of days that the mean daily water temperature exceeded 7 $^{\circ}$ C (Table 4).

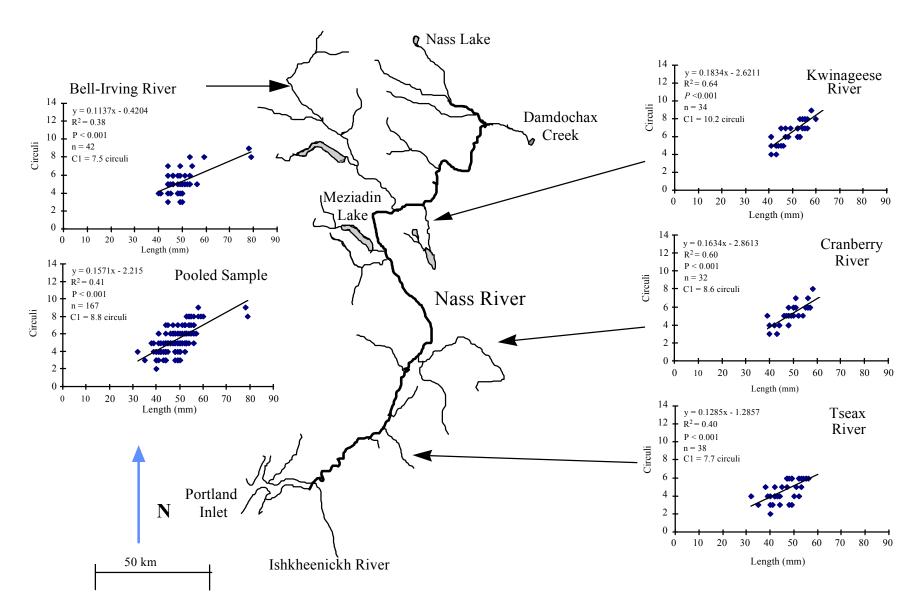


Figure 2. The relationship between circuli counts from the scale focus to the scale margin and fork length of age-0 steelhead from the Bell-Irving, Kwinageese, Cranberry, and Tseax rivers and all samples pooled.

Table 3. The mean, range and sample size (n) of circuli counted from the scale focus to the first annulus for adult steelhead from the Bell-Irving, Cranberry, Kincolith, Kwinageese, Meziadin, Tseax and upper Nass rivers, Damdochax Creek, Nass River fishwheels, Nisga'a catch monitoring program and all winter steelhead pooled.

		Adult steelhead				Adjusted
		Number of circuli		Percentage	MSA	
Population	C1	Mean	Range	n	exceeding	(years)
					C1	
Summer populations						
Bell-Irving	7.5	6.4	3-12	115	17%	3.52
Cranberry	8.6	8.0	3-12	230	17%	3.65
Damdochax	8.8 ¹	6.8	2-10	61	5%	3.60
Kwinageese	10.2	8.4	4-13	84	2%	3.49
Meziadin	8.8 ¹	7.4	5-12	45	11%	3.54
Upper Nass River	8.8 ¹	6.8	4-9	24	0%	3.52
Pooled summer steelhead						
Fishwheels (1997)	8.8 ¹	7.2	2-13	796	11%	3.52
Sympatric populations						
Tseax	7.7	7.9	5-9	20	50%	3.75
Winter populations						
Kincolith	8.8 ¹	7.0	4-11	26	12%	3.58
Pooled winter steelhead						
Catch Monitoring	8.8 ¹	7.6	5-11	16	13%	3.51
All winter steelhead	8.8 ¹	7.2	4-11	42	12%	3.46
pooled						

¹ C1 estimated from the pooled sample in Figure 2.

Waterbody	Beginning date	End date	Growing season length (days) ⁴	Estimated MSA (years)
Summer populations				
Bell-Irving River	June 2	September 27	113	4.04
Bowser River	before May 23	August 26	96	4.49 ¹
Cranberry River	May 16	October 6	143	3.35
Kwinageese River	May 16	October 20	158	3.05
Kiteen River	May 27	October 3	130	3.64
Meziadin River	NA	after October 24	NA	NA
Oweegee Creek	May 2	October 7	159	3.04
Ksedin Creek	May 18	September 27	133	3.57^{1}
Snowbank Creek	June 17	September 6	81	4.93
Tchitin River	May 29	September 27	122	3.82
Teigen Creek	June 26	October 2^2	101	4.35^{2}
Sympatric populations				
Seaskinnish Creek	April 15	October 21	190	2.50
Tseax River	May 15	November 7 ²	183	2.61 ²
Winter Populations				
Chambers Creek	May 15	October 10	153	3.15
Ishkheenickh River	May 26	October 9	143	3.35
Zolzap Creek ³	Mean of 1994	and 1995 data	171	2.82

Table 4. The beginning date, end date, and growing season length in 1998 and the estimated mean smolt age (MSA).

¹ The entire growing season was not measured in 1998 and the growing season estimate may differ by a few days.

 2 The end date for the growing season was estimated from data collected in 1997.

³ Data from Nass (1997a, b).

⁴ Some days between the beginning and end dates had mean daily water temperatures below 7 ^oC and were excluded from the growing season length estimates.

Female Length

Mean female length data for Nass River steelhead populations is summarized in Table 5. Data were available for five distinct summer run populations, one sympatric population, and three winter populations. The pooled mean for each of these population groups was used for those systems not having female length estimates.

Table 5. The mean and standard deviation (SD) in female length for steelhead in the Bell-Irving, Cranberry, Ishkheenickh, Kincolith, Kwinageese, Meziadin Tseax and upper Nass rivers, Damdochax Creek, Nass River fishwheels, Nisga'a fishery catch monitoring program and all winter steelhead pooled.

	Female length				
Population	Mean	SD	Sample		
	(cm)	(cm)	size		
Summer populations					
Bell-Irving	68.3	7.2	60		
Cranberry	69.9	7.7	273		
Damdochax	74.3	6.2	72		
Kwinageese	71.7	7.7	85		
Meziadin	71.2	9.6	45		
Upper Nass River	70.4	7.7	20		
Pooled summer steelhead					
Fishwheels (1996-98)	67.8	8.3	704		
Sympatric populations					
Tseax ¹	75.6	8.9	7		
Winter populations					
Chambers	82.1	7.2	27		
Ishkheenickh	79.6	6.2	42		
Kincolith ¹	74.3	7.0	30		
Pooled winter steelhead					
Catch monitoring ¹	68.8	9.3	19		
All winter steelhead	77.1	8.4	118		
pooled					

¹ Includes data collected by the Nisga'a Fisheries Program.

Alkalinity

Measures of alkalinity for Nass River tributaries were obtained from a variety of sources including; Saimoto and Saimoto 1998, Parken 1997a, Triton Environmental Consultants Ltd. 1994b, and Triton Environmental Consultants Ltd. 1994a (Table 6). Additional total alkalinity samples were collected by Nisga'a Fisheries during the summer low flow period in 2000 and 2001 and incorporated into the model.

Total alkalinity measured from water samples was the most reliable estimate and was used in the model when the data existed. For systems where there was no alkalinity data, total alkalinity was estimated from water conductivity measured during the 1998 summer low flow period (Parken 1997a and NTC 1998a-g) using (Ptolemy 1992):

$$ALK = 0.421 \bullet COND - 2.31 \tag{2}$$
$$(r^2 = 0.86).$$

	Total alkalinity (mg/l) estimated from:					
Population	Water sample	Conductivity	Water yield ^g			
Summer populations						
Bell-Irving	64.0 ^a	55.4 ^b	17.4			
Bowser	44.0^{a}	26.5	17.4			
Cranberry (main)	83.0	65.2 ^b	22.5			
Cranberry (Kiteen)	62.5 ^b	60.3 ^b	22.5			
Damdochax	43.3 ^e		17.4			
Hodder	62.0^{a}		17.4			
Konigus	53.0		17.4			
Kwinageese	23.1 ^d	14.2	17.4			
Kwinatahl	24.3	28.4 ^b	18.1			
Meziadin	35.0	26.3	17.4			
Muskaboo	42.8		17.4			
Panorama	54.4		17.4			
Paw	23.6 ^b		17.4			
Taylor	33.3		17.4			
Tchitin	46.7		17.4			
Teigen	57.0 ^a	52.4	17.4			
Treaty Creek	54.0		17.4			
Upper Nass River	51.7		17.4			
White	32.8 ^b	30.2 ^b	17.4			
Sympatric populations						
Seaskinnish	104.0	34.7	18.1			
Tseax	34.0	26.3	18.1			
Winter populations						
Ansedegan	38.0 ^c	48.2 ^f	18.1			
Burton	25.0 ^c	7.4 ^f	12.8			
Chambers	20.0°		21.8			
Chemainuk		39.8 ^f	12.8			
Diskangieq	24.0 ^c		18.1			
Ginlulak	31.0 ^c		18.1			
Gish		52.4 ^f	18.1			
Greenville	13.0 ^c		18.1			
Iknouk	28.0 ^c	6.1 ^f	18.1			
Keazoah	38.0 ^c	6.1 ^f	18.1			
Kincolith	39.8	6.1 ^f	21.0			
Ksedin	21.0 ^b	22.8 ^f	18.1			
Ksemamaith	38.0 ^c	39.8 ^f	18.1			
Kwinyarh	21.0 ^c	31.4 ^f	18.1			
Monkley	35.0 ^c	11.2 ^f	12.8			
Zolzap	27.0 ^c		18.1			

Table 6. The total alkalinity estimated from water samples collected during summer low flow
period, stream conductivity measured during summer low flow period, and water yield.

^a Saimoto and Saimoto 1998.
^b Parken, C.K. 1999h.
^c Nisga'a Fisheries Program. 2000. (Unpublished data).
^d Triton Environmental Consultants Ltd. 1994b.
^e Triton Environmental Consultants Ltd. 1994a.
^f NTC 1998a-g.
^g Alkalinity calculations were generated from water yield as a function of mean annual discharge.

Where neither alkalinity nor conductivity was available, alkalinity was predicted from water yield (WY; m³s⁻¹km⁻²) (Ptolemy 1992) using:

$$ALK = 10^{1.69 - 0.54 \cdot \log_{10}(100 \cdot WY)}$$
(3)

 $(r^2 = 0.56).$

MODEL DESCRIPTION

Juvenile Steelhead Distributions

The model defines the distribution of steelhead fry in the Nass River watershed based on stream order and mean annual discharge (MAD). The model uses stream order and MAD as criteria to classify streams that are steelhead bearing (Appendix B).

Sebastian et al. (1991) reported juvenile steelhead use to be high in stream orders of 3, 4, and 5 (1:50000 map base) for high-yield British Columbia streams. For the Nass model, we assumed that only those tributary watersheds of stream order 4 or greater (1:20000 TRIM map base) could support steelhead rearing (4th order model). If all 3rd order streams or larger are included, the Nass model includes stream courses that would have been excluded from the model had a 1:50000 map base been used. However, with the use of a toggle, the model can also be run for 3rd order or larger streams.

Tautz et al. (1992) suggested that steelhead distribution in the Skeena drainage is limited to those tributary systems with MAD of greater than 1.0 to 1.5 m^3 /s. This was based on considerable empirical data for steelhead distributions within the Skeena drainage. However, other authors have noted steelhead presence in small 3rd order streams with discharges less than 0.5 m³/s (Sheppard and Johnson 1985, Bustard and Narver 1975, Hume and Parkinson 1987).

In the Nass, considerably less is known about the distribution of steelhead except in the major tributary systems such as the Cranberry, Ishkheenickhh, Tseax, Damdochax, and Kwinageese. The smaller tributary watersheds have received very little attention and there is virtually no data relating MAD to steelhead presence. Accordingly, for the Nass model, we used a conservative estimate of MAD equal to 0.5 m^3 /s as the lower limit of distribution so as not to exclude potential steelhead bearing streams. Field verification of steelhead presence in some Nass streams is still required. Tributaries currently included in the model may be excluded based on observations of stream turbidity and water temperature.

Accessible Length

The length of stream within a tributary accessible to steelhead is restricted by; barriers to migration, gradient, flows (see above for discussion of MAD), water quality (dissolved oxygen, turbidity, temperature), as well as evolutionary distribution or recolonization factors.

Waterfalls, debris jams, and excessive water velocities may impede fish access into otherwise suitable habitat. However, assessing whether or not a natural obstruction (e.g. falls, cascade, chute) is a barrier is not easy. Falls that are insurmountable at one time of the year may be passed at other times under different flows (Bjornn and Reiser 1991). Powers and Orsborn (1985) reported that the ability of salmonids to pass over barriers is dependent on the swimming velocity of the fish, the horizontal and vertical distances to be jumped, and the angle to the top of the barrier. The pool depth to height ratio is also important (Stuart 1962). Reiser and Peacock (1985) determined a maximum jumping height for steelhead of 3.4 m, under optimal conditions.

For the Nass steelhead model, we used a conservative height estimate of 2.0 m for an obstruction to be considered a barrier. We also considered that a point along the stream course where gradient exceeded 100% (45°) for longer than 50 m would also be a barrier to steelhead migration.

We used the limited information on barriers within the Nass drainage to restrict steelhead use in systems where such information existed. The sources of information on barriers included FISS (1991a and b), Aquatic Biophysical Maps (1977), unpublished information from WLAP, and data gathered through Watershed Restoration Program studies (NTC 1994-98) and Fish Inventory Projects (NTC 1998a-h). Appendix C lists the known barriers for the Nass River drainage.

In terms of gradient, steelhead have been reported to occur in habitats ranging in gradient from less than 1 to 6% (Hume and Parkinson 1987, Roper et al. 1994, Bisson et al. 1988, Bustard and Narver 1975). For this model, accessibility was defined as all stream segments of 8% gradient or less, contiguous from the stream mouth up to a known barrier of greater than 2 m in height or a gradient of 100% over 50 m. The 8% gradient value for accessible area to steelhead juveniles was supported with data for the upper Kincolith River (NTC 1998a). In this reconnaissance level inventory, 80% (n=10) of juvenile steelhead captured during fish surveys were found in reaches with gradients less than 8%.

Water quality and it's relation to steelhead use is not part of this model and may account for inappropriate inclusion of some tributaries in the model. However, until such data exists, the model maintains the flexibility to include or exclude such systems.

The total accessible stream length within each Nass tributary was calculated from digital TRIM files (1:20000 scale) using ARCINFO and stratified according to gradient and stream order (Appendix D). The model was designed to allow for the summation of accessible length for stream orders greater than 3 and to determine the proportional contribution of 3rd order or larger streams.

Additional knowledge of the expected distribution of steelhead within drainages was used to determine which stream orders to include in the model for specific tributaries. For example, only 5th order or larger stream sections were included for the Cranberry River. This decision was based on the fact that very little rearing habitat exists for steelhead fry in the tributaries to the Cranberry River.

Stream Width

This model component uses MAD to predict average late-summer stream width. Tautz et al. (1992) compiled widths for 119 reaches from 47 different streams in British Columbia to develop the following relationship between MAD and stream width:

$$WIDTH = 5.42 \bullet MAD^{0.523} \tag{4}$$

The adjusted r² value for this relationship was 0.93 with a coefficient of variation (CV) of 12.1. Average widths for small streams were determined by averaging point width measurements within a reach unit (unpublished data from WLAP, NTC 1994-98). For large streams, average widths were determined from large-scale aerial photos (i.e. 1:2000 to 10000) either by averaging several point width measurements or by digitizing stream area and dividing by thalweg length.

Because we only calculated MAD for the mouth of each tributary watershed, the predicted width only applies to the mainstem of the watershed, at some point below all major sources of inflows to the mainstem. Therefore, for watersheds of stream order 5 or greater, the model overestimates the stream width of the lower order tributary streams within the watershed.

To account for this, we examined the relationship between actual widths of different stream orders and found that stream width decreased by approximately 50% for each decrease in stream order. That is, within a watershed, the stream width for a 4^{th} order stream was approximately half that for a 5^{th} order stream and the stream width for a 5^{th} order stream was approximately half that for a 6^{th} order stream (Appendix E). This was calculated as:

$$WIDTH_{i-1} = 0.5 \bullet WIDTH_i$$

(5)

where the subscript *i* denotes the stream order.

Useable Area

This component of the model predicts the universe of suitable fry habitat based on the estimated fraction of stream width that is hydraulically suitable for steelhead fry rearing and stream or reach length. Hydraulically suitable fry habitat was expressed as a percentage of stream width and determined from depth-velocity probability-of-use curves (Bovee 1982) developed for the Coquihalla River (Ptolemy 1989). An analysis of 628 stream reaches in the province of British Columbia revealed the following relationship between percent useable width (%UW), MAD_{adi} and low flow stage (LFS):

 $\% UW = 10^{(2.390.275 \cdot \log_{10}(MAD_{adj} + 1)0.4 \cdot \log_{10}(LFS + 1))} 1$ (6)

The adjusted r² for this relationship was 0.59 with a CV of 11.9. Low flow stage is determined as a percentage of MAD. Critical Period Monthly Mean Flows (CPPM) (also referred to as LFS) for the Skeena ranged from 8% to 109% (Tautz et al. 1992). Lower Skeena tributaries such as Zymoetz and Kleanza had reported CPPM values of 82% and 59%, respectively. Ptolemy (R. Ptolemy, WLAP, pers. comm.) suggests that the CPPM (September) for the Nass River drainage is 110% of MAD. This value was used in the model to determine useable width for all tributaries.

Theoretical useable width (USW) for each stream order within each tributary was then calculated (Appendix F):

$$USW_o = \% UW_o \bullet Width_o$$

(7)

where the subscript *o* denotes stream order.

Finally, useable stream area (USA) (Appendix F) could be calculated using:

```
USA = \sum [USW_o \bullet LENGTH_o]
```

(8)

where $LENGTH_o$ is the accessible stream length by stream order.

Smolt Yield

Six different models were used to estimate the number of smolts at stream carrying capacity (based on the amount of useable length or area for fry).

Model 1: Keogh Smolts per kilometre of stream

Tautz et al. (1992) reported carrying capacity estimates of smolt production as 300 per kilometre for the Keogh River, based on 7500 smolts for 25 km of rearing habitat and a 14% smolt to adult survival. We applied this estimate to the accessible stream length for Nass River tributaries.

Model 2: Keogh Smolts per square metre of stream

Tautz et al. (1992) reported carrying capacity estimates of smolt production as 0.058 smolts per square metre of useable area in the Keogh River. We applied this estimate to the accessible useable stream area for Nass River tributaries.

Model 3: Cranberry Smolts per kilometre of stream

Keogh River estimates of smolt numbers at carrying capacity would be expected to overestimate densities for larger river systems and where smolt age is greater such as in northern rivers. We therefore, determined smolt output per kilometre using data from Sebastian (1987); although it is unknown if the populations were at carrying capacity when the measurements were made. However, the mid 1980s was a period of high steelhead production across much of its range on the Pacific coast. The Sebastian (1987) estimate was 200 smolts per kilometre. We applied this estimate to the accessible stream length.

Model 4: Cranberry Smolts per square metre of stream

We used a smolt output of 0.033 smolts per square metre using data from Sebastian (1987) and applied this estimate to the accessible useable stream area for Nass River tributaries.

Model 5: Keogh River smolts per kilometre with nutrient and smolt size adjustment

One way to adjust for system specific differences in juvenile steelhead rearing conditions between the Keogh River and Nass River tributary watersheds is to account for stream productivity (nutrients) and the length of the rearing period to smoltification (mean smolt age) (Tautz et al. 1992). This was done for the Nass River Steelhead Production Model. First, alkalinity was used to determine the standing crop (SC) of steelhead in kg/ha at the end of summer for the Keogh River and the respective Nass tributary watersheds (Tautz et al. 1992):

$$SC = 36.3 \bullet ALK^{0.5} \tag{9}$$

$$(r^2=0.30, p=0.01)$$

This then enabled calculation of the first adjustment factor:

$$ADJUST1 = \frac{SCROP_{Nasstrib}}{SCROP_{Keogh}}$$
(10)

Adjustment factor 2 is a function of MSA and was determined for the Keogh and Nass tributaries using:

$$SPACE = 1.24 \bullet (MSA) - 1.31$$
 (11)

where SPACE is the total space required to produce a smolt (Tautz et al. 1992).

The second adjustment factor was calculated using:

$$ADJUST2 = \frac{SPACE_{Keogh}}{SPACE_{Nasstrib}}$$
(12)

Lastly, the total number of smolts per kilometre of accessible stream for each tributary using the Keogh density of 300 smolts per kilometre was adjusted by:

$$SMOLTS = SMOLTS_{Modell} \bullet ADJUST1 \bullet ADJUST2$$
(13)

Appendix G contains the results of the above calculations to derive the nutrient adjustment factors.

Model 6: Keogh River smolts per kilometre with nutrient and smolt size adjustment

Model 6 followed the same steps as Model 5, but the adjustments were applied against the Keogh smolts per square metre (Model 2).

Escapement Required

The required number of spawners to fully seed the available habitat was determined for each tributary using the following equations from Tautz et al. (1992):

Fry to Smolt Survival

The number of fry required to produce the maximum smolt production was determined using the following (Symons 1979, Tautz et al. 1992):

$$FRYSURV = e^{-0.7174 \cdot MSA}$$

(14)

Egg to Fry Survival

The number of eggs required was then derived using an estimate for egg to fry survival of 10%. This survival rate can be expected to vary considerably among years which means that the required number of eggs to fully seed the available fry habitat will also vary from year to year.

Female Fecundity

To determine the required number of spawners to produce sufficient eggs requires information on fecundity. The number of eggs per female of Nass steelhead was estimated using data for Nass River steelhead and the following relation developed by Atagi (1999):

 $EGGS = e^{1.8054 \cdot Ln(LENGTH) - 3.278}$ (15)

Adult lengths of female steelhead were available for three winter populations, one sympatric population, and six summer populations (Table 5). For those systems without female length data, pooled means of the winter, sympatric or summer populations were applied.

Required Escapement

Finally, assuming a 1:1 sex ratio, the required number of spawners to fully seed the accessible rearing habitat was calculated as:

$$SPAWNERS = 2 \bullet SMOLTS \bullet FRYSURV^{-1} \bullet EGGSURV^{-1} \bullet EGGS^{-1}$$
(16)

RESULTS

Results are presented here for 63 tributary systems to the Nass River and include 26 winter populations, two sympatric populations and 34 summer populations. The model was run for accessible area of 4^{th} order or greater.

Smolt Capacity

As per Sebastian et al. (1991) and Tautz et al. (1992), we recommend inclusion of only 4th order or larger streams in determining smolt production capacity for the Nass drainage. Smolt production would likely be overestimated by 20% using the 3rd order model (using Model 6) for winter populations, by 10% for sympatric populations, and by nearly 0% (0.5%) for summer populations. Very few 3rd order streams were considered suitable steelhead habitat for Nass steelhead populations.

Using the 4th order model, smolt production estimates for all confirmed habitat in the winter population systems ranged from 17,774 for Model 4 to 55,266 for Model 1 (Appendix H, Table 7). Smolt production estimates for the sympatric populations ranged from 2,759 for Model 4 to 9,891 for Model 5. Smolt production estimates for the summer populations ranged from 86,417 for Model 4 to 248,272 for Model 5.

We recommend Model 6 as the most appropriate model to use for determining steelhead productive capacity in the Nass and establishing escapement goals. This is the same model used by Tautz et al. (1992) to determine steelhead capacity in the Skeena drainage. Model 6 suggests a smolt production at capacity of 31,221 for the confirmed winter populations, 6,235 for the sympatric populations, and 192,014 for the summer populations (Table 7).

	Keogh Length Model 1	Keogh Area Model 2	Cranberry Length Model 3	Cranberry Area Model 4	Adjusted Keogh Length Model 5	Adjusted Keogh Area Model 6
Winter populations						
All Systems	69,093	37,987	46,062	21,613	68,880	38,139
Confirmed ¹	55,266	31,238	36,844	17,774	54,851	31,221
Sympatric populations						
All Systems	7,644	4,849	5,096	2,759	9,891	6,235
Confirmed ²	7,644	4,849	5,096	2,759	9,891	6,235
Summer populations						
All Systems	296,772	211,050	197,848	120,080	352,737	255,942
Confirmed ³	198,474	151,885	132,316	86,417	248,272	192,014

Table 7. Estimates of smolt productive capacity using 6 different models.

¹ Confirmed winter populations were Kincolith, Iknouk, Keazoah, Chambers, Ishkheenickh, Ksedin, Ksemamaith, Kwinyarh, and Zolzap.

² Confirmed sympatric populations were Tseax River and Seaskinnish Creek.

³ Confirmed summer populations were Tchitin, Kinskuch, Brown Bear, Meziadin, Cranberry (main), Cranberry (Kiteen), Bell-Irving (above Teigen, Teigen-Bowser, below Bowser), Bowser, Taft, Treaty, Teigen, Hodder, Kwinageese, Damdochax and upper Nass (above Damdochax).

Required Escapement

Table 8 (see also Appendix I) contains estimates of the required number of spawners to fully seed the available habitat. Using Model 6, and only including tributaries for which steelhead are known to be present, the required number of winter run spawners to fully seed habitat in the lower Nass River tributaries is estimated to be 1,200 (Table 8). The Ishkheenickhh, Kincolith, Iknouk and Kwiniak (Ksedin) rivers account for 93% of the potential number of spawners (Figure 3).

For the sympatric populations, the required number of spawners was estimated to be 310, with the Tseax River accounting for 63% of this and the Seaskinnish the remaining 37% (Table 8).

Using Model 6, the estimated required number of spawners for the summer populations with confirmed steelhead presence was 12,400 (Table 8). Cranberry, Kiteen, Bell-Irving, Damdochax, Kwinageese, and Upper Nass accounted for 97% of the total aggregate spawners (Figure 4).

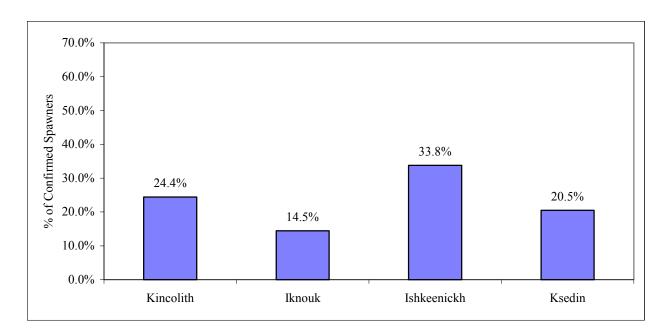


Figure 3. Distribution of winter run steelhead among the major tributary producers in the Lower Nass.

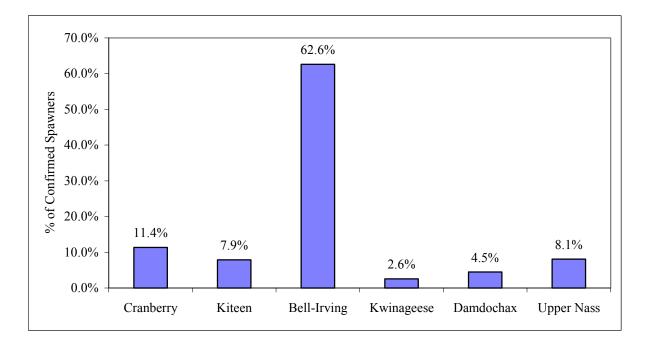


Figure 4. Distribution of summer run steelhead among the major tributary producers in the Upper Nass.

	Keogh Length Model 1	Keogh Area Model 2	Cranberry Length Model 3	Cranberry Area Model 4	Adjusted Keogh Length Model 5	Adjusted Keogh Area Model 6
Winter populations						
All Systems	2,629	1,452	1,753	826	2,647	1,473
Confirmed ¹	2,091	1,189	1,394	677	2,101	1,204
Sympatric populations						
All Systems	380	241	253	137	491	310
Confirmed ²	380	241	253	137	491	310
Summer populations						
All Systems	17,789	13,019	11,859	7,407	20,995	15,662
Confirmed ³	12,751	9,987	8,501	5,682	15,642	12,386

Table 8. Estimates of required number of spawners to fully seed available habitat.

¹ Confirmed winter populations were Kincolith, Iknouk, Keazoah, Chambers, Ishkheenickh, Ksedin, Ksemamaith, Kwinyarh, and Zolzap.

² Confirmed sympatric populations were Tseax River and Seaskinnish Creek.

³ Confirmed summer populations were Tchitin, Kinskuch, Brown Bear, Meziadin, Cranberry (main), Cranberry (Kiteen), Bell-Irving (above Teigen, Teigen-Bowser, below Bowser), Bowser, Taft, Treaty, Teigen, Hodder, Kwinageese, Damdochax and upper Nass (above Damdochax).

Sensitivity Analyses

The following section describes some of the sensitivities of the model to various parameters. We used the required number of summer population spawners as the sensitivity output for this analysis.

Steelhead Streams

Table 8 shows the difference in the total number of required spawners when all potential systems are included versus only those with confirmed steelhead presence. The inclusion of unconfirmed systems made little difference to the total estimate for winter populations (difference of 250 fish) because the majority of steelhead inhabit the four major systems. In the case of summer populations, inclusion of all systems increased the estimate of the required number of spawners by 2,500 fish. White River, Taylor River, and Muskaboo River accounted for the vast majority of the potential "extra production" (2280 spawners). Future work should focus on confirming or refuting steelhead use in these three systems.

Useable Area

Four main components are relevant to the determination of useable area within each tributary. The first is the accessible length of stream. For many of the lower Nass tributaries, the locations of confirmed barriers to anadromous migration are known. These barriers define the upper limit of steelhead access to the system. However, for many of the upper Nass tributaries,

the upstream limit of steelhead use is not well understood; particularly the use of major tributaries to systems such as Cranberry, Kiteen, and Bell-Irving; as well as the Upper Nass. Given the uncertainty of use within these watersheds, (and other Upper Nass systems), we limited the distribution within these major systems to primarily mainstem habitat. The inclusion of 4^{th} and 5^{th} order tributary lengths for these systems would increase the available habitat above what is presented here.

The second component relevant to the determination of useable area is the prediction of stream width from MAD using equation 4. Figure 5 shows the relationship between predicted and actual stream widths for summer run tributaries in the Nass. The relationship appears to work well for predicting stream width.

The third component in the determination of uesable area is the calculation of stream width for sub-watersheds within drainages. Equation 4 predicts the stream width near the mouth of the "parent" stream. If the parent stream is a 5th order stream, then the 4th order tributaries flowing into it will have smaller stream widths. We used a 50% reduction in stream width for each reduction in stream order (equation 5). If 60% were used as the stream width reduction factor then the estimate of required spawners for the summer populations (confirmed systems) increased from 12,386 to 12,839 (a 4% increase). Similarly, if 40% were used, then the estimate of spawners decreased to 11,866 (a 4% reduction). Figure 6a illustrates how the required number of spawners varies as the stream width reduction factor is varied.

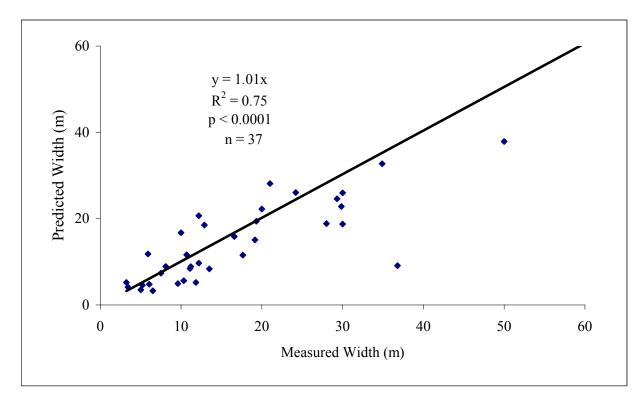


Figure 5. Relationship between measured stream width and predicted stream width for Nass River steelhead systems.

Finally, MAD and LFS are used in equations 4 and 6 to derive the percent useable width for each stream order. MAD is estimated from Water Survey of Canada data for select watersheds within the Nass and lower Skeena watersheds and the potential bias associated with the estimated MAD values for each tributary will affect the estimate of useable area and resulting estimate of smolt productivity.

We examined two approaches to estimating MAD for Nass drainages supporting summer populations. The first used the WSC station at Shumal to prorate MAD for all drainages upstream of Shumal (Shumal method). The second (Zone method) used WSC stations at Bell-Irving, Meziadin, and Kispiox to prorate MAD for the non-gauged watersheds. The difference in the required number of summer run spawners was slight (12,386 for the Shumal method and 13,572 for the Zone method). We also examined directional bias in MAD for all watersheds using the Shumal method (Figure 6b). The final estimate of spawners was relatively robust to errors in the estimate of MAD.

In general, the model was fairly tolerant of errors in the width reduction factor and MAD. The required number of summer run spawners ranged from 10,000 to 14,000 over a wide range of potential error in these parameters.

Similarly, biases in LFS will also affect the estimate. Figure 6c shows the response of the required number of summer run spawners to changes in the estimate of LFS. The model results were more sensitive to errors in LFS (estimates ranging from 10,000 to 16,000 spawners).

Mean Smolt Age

The model was run with different mean smolt age estimates to account for under-aging biases. The model predicted the number of required spawners from mean smolt age estimates that were adjusted to account for under-aging bias resulting from an indistinguishable first-year annulus. The mean smolt age from steelhead scales was not adjusted for winter steelhead populations where circuli counts to the first annulus did not exist (Chambers Creek and Ishkheenickh River). The model also predicted the number of required spawners from mean smolt age estimates based on the growing season length. The mean smolt age was estimated from adult steelhead scales for populations where the growing season length was unknown. For some populations, the mean smolt age estimated from the growing season length was less than the mean smolt age from adult steelhead scales (e.g. sympatric populations; Tables 2, 4). Thus, the number of required spawners was also predicted from the method that produced the oldest mean smolt age estimate. The variability among the different estimates was small, ranging from 10,420 to 12,386 summer run spawners (Figure 6d).

Fecundity

The number of required spawners to fully seed the available rearing habitat was calculated with the length-fecundity relationship developed from Nass River summer steelhead (Atagi 1999). We compared the final estimate of the required number of spawners to fully seed the available habitat using this fecundity relation with that of (Tautz et al. 1992) for Skeena summer run steelhead. Using the Skeena fecundity estimate decreased the estimate of the required number of spawners by 4% for the summer populations (from 12,386 to 11,884).

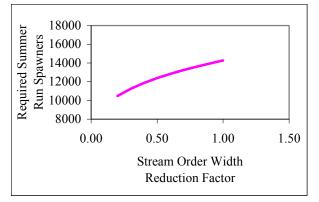


Figure 6a. Change in the required number of summer run spawners with change in the reduction factor used to determine stream width in tributaries (equation 5). A factor of 1 indicates no reduction in width.

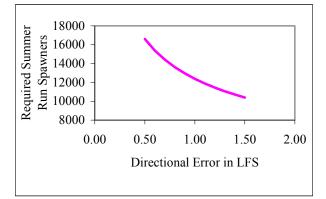


Figure 6c. Change in the required number of summer run spawners with directional error in low flow stage (LFS). A factor of 1 indicates no error in LFS.

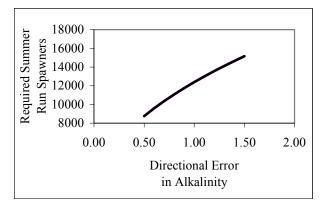


Figure 6e. Change in the required number of summer run spawners with directional bias in alkalinity.

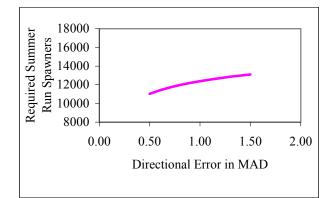


Figure 6b. Change in the required number of summer run spawners with directional error in Mean Annual Discharge (MAD). A factor of 1 indicates no error in MAD.

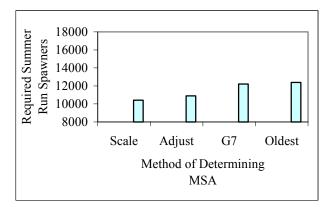


Figure 6d. Change in the required number of summer run spawners with different calculation of mean smolt age (MSA).

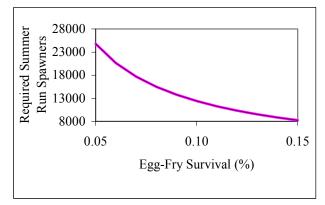


Figure 6f. Change in the required number of summer run spawners with egg to fry survival (percent).

Productivity Measures and Adjustments

A key variable used in the derivation of Model 6 is alkalinity, which is used to adjust Keogh River smolt densities. We examined directional bias in alkalinity for summer run populations (Figure 6e). The model was quite sensitive to error in alkalinity with estimates ranging from 8,758 to 15,169 summer run spawners for directional errors in alkalinity of 50% to 150%.

Survivals

The model was most sensitive to egg-to-fry survival (Figure 6f). Estimates of the required number of summer run spawners increased two-fold from 12,386 to 24,771 with a corresponding decrease in egg-to-fry survival from 10% to 5%.

Preliminary Escapement Goals

Three methods have been proposed, developed or implemented for determining escapement goals for British Columbia steelhead. All three methods require determining the freshwater rearing capability and for simplicity they will be called the (1) stock-recruitment method, (2) simple management rule, and (3) fully seeded rearing habitat method.

The stock-recruitment method was implemented for Skeena River summer steelhead (Tautz et al. 1992; Hooton 1999). Tautz et al. (1992) estimated the freshwater habitat capability for Skeena River summer steelhead and used estimates of ocean survival to estimate the adult summer steelhead production at capacity ($P_{Replacement}$). Tautz et al. (1992) also calculated stock-specific productivity estimates (Beverton-Holt's A value) based on stock-specific life history characteristics (mean fecundity) and survival estimates (egg-fry, fry-smolt, and smolt-adult survivals). This information was then used to calculate the number of spawners at maximum sustainable yield (MSY; P_{MSY}):

$$P_{MSY} = P_{Replacement} \times \left[\frac{\left(A - 1 + \sqrt{1 - A} \right)}{A} \right]$$

In order to apply the stock-recruitment method to Nass River steelhead, stock-specific productivity was calculated for each population. Beverton-Holt's A values were calculated for favourable conditions of ocean survival (15.4%; Johnston et al. 2002) and for unfavourable conditions of ocean survival (10.4%; Parken 1997b). Stock-specific productivity was calculated with empirical data collected to December 1998 following the methods described by Tautz et al. (1992) and Parken (1997b). Mean smolt ages were from the method that produced the oldest mean smolt age estimate and fecundity was estimated with the Nass summer run relationship. Stock-specific productivity (Beverton-Holt A value) was sensitive to smolt-to-adult survival estimates (Table 9).

The asymptotic adult steelhead production at capacity was calculated with Model 6 for systems with confirmed steelhead presence and for all systems (Table 10). The asymptotic maximum adult production was calculated from the asymptotic maximum smolt production and smolt-to-adult survival for favourable and unfavourable conditions (Table 10).

	Beverton-Holt's A value					
Population	Smolt- adult Survival = 15.4%	Smolt – adult survival = 10.4%				
Summer populations						
Bell-Irving	0.77	0.50				
Cranberry	0.88	0.74				
Kiteen	0.88	0.74				
Damdochax	0.91	0.80				
Kwinageese	0.91	0.81				
Meziadin	0.90	0.79				
Sympatric populations						
Tseax ¹	0.90	0.77				
Seaskinnish	0.90	0.77				
Winter populations						
Iknouk	0.94	0.86				
Ishkheenickh	0.95	0.89				
Kincolith ¹	0.91	0.81				
Ksedin	0.93	0.84				

Table 9. The stock-specific productivity (Beverton-Holt's A value) for major steelhead system	ns
in the Nass River.	

Table 10. Asymptotic maximum smolt and adult production estimates for Nass River steelhead.

	Asymptotic maximum smolt production ⁴	Asymptotic maximum adult production ⁴	
	(Model 6)		10.4% Smolt – Adult Survival
Winter populations			
All Systems	38,139	5,873	3,966
Confirmed ¹	31,221	4,808	3,247
Sympatric			
populations			
All Systems	6,235	960	648
Confirmed ²	6,235	960	648
Summer			
populations			
All Systems	255,942	39,415	26,618
Confirmed ³	192,014	29,570	19,969

¹ Confirmed winter populations were Kincolith, Iknouk, Keazoah, Chambers, Ishkheenickh, Ksedin, Ksemamaith, Kwinyarh, and Zolzap.

² Confirmed sympatric populations were Tseax River and Seaskinnish Creek.

³ Confirmed summer populations were Tchitin, Kinskuch, Brown Bear, Meziadin, Cranberry (main), Cranberry (Kiteen), Bell-Irving (above Teigen, Teigen-Bowser, below Bowser), Bowser, Taft, Treaty, Teigen, Hodder, Kwinageese, Damdochax and upper Nass (above Damdochax). The number of spawners at replacement was required in order to estimate the number of spawners at MSY. The number of spawners at replacement ($P_{Replacement}$) was related to the asymptotic maximum adult production (R_{max}) by:

 $P_{Replacement} = R_{max} \times A$

where A was Beverton-Holt's A value.

The second method to develop escapement goals was based on the simple management rule for steelhead conservation, proposed by Johnston et al. (2002). The method requires an estimate of the freshwater habitat capability and ocean survival conditions to calculate the asymptotic maximum adult steelhead production. Johnston et al. (2002) found that a spawner abundance of about 35% of asymptotic maximum recruitment will perform well in terms of maximizing harvestable surplus steelhead and minimizing risk of overharvest for unproductive populations. They recommend that populations exceeding the threshold would be in the zone for "routine fisheries management", whereas populations below the threshold would be associated with a significant degree of conservation concern or extreme conservation concern (Johnston et al. (2002).

The third method for establishing escapement goals was based on the number of required spawners to fully seed the freshwater habitat (Model 6). The fully seeded rearing habitat method does not rely on an estimate of ocean survival.

The required number of spawners (escapement goal) for Nass River steelhead for these three methods is presented in Table 11. Estimates for both favourable and unfavourable smolt to adult survival are presented.

The three methods provide different spawner requirements, which can be evaluated as a percentage of the maximum asymptotic adult production (Table 12). Johnston et al. (2002) proposed the spawner abundances should be near or exceed 35% of the adult production capacity for "routine fisheries management". The stock-recruitment method did not achieve spawner requirements in the zone for "routine fisheries management" for summer, winter or sympatric populations. As defined, the simple management rule achieved spawner requirements in the zone for "routine fisheries management" for summer, winter and sympatric populations.

In comparison, the fully seeded rearing habitat method achieved spawner requirements that were near to or in the zone for "routine fisheries management" for all populations.

	Required spawners at		Required spawners		Required spawners	
	$MSY(P_{MSY})$		for Simple		to fully seed	
		· · ·		nent Rule	rearing habitat	
			(35%)			
	15.4%	10.4%	15.4%	10.4%		
	Smolt-	Smolt-	Smolt-	Smolt-		
	Adult	Adult	Adult	Adult		
Winter Populations						
All Systems	1,099	919	2,056	1,388	1,473	
Confirmed ¹	898	750	1,683	1,136	1,204	
Sympatric Populations						
All Systems	210	162	336	227	310	
Confirmed ²	210	162	336	227	310	
Summer Populations						
All Systems	9,110	5,959	13,795	9,316	15,662	
Confirmed ³	6,924	4,298	10,350	6,989	12,386	

Table 11. The number of required spawners using MSY, the Simple Management Rule of 35%,
and the Model 6 habitat model.

¹ Confirmed winter populations were Kincolith, Iknouk, Keazoah, Chambers, Ishkheenickh, Ksedin, Ksemamaith, Kwinyarh, and Zolzap.

² Confirmed sympatric populations were Tseax River and Seaskinnish Creek.

³ Confirmed summer populations were Tchitin, Kinskuch, Brown Bear, Meziadin, Cranberry (main), Cranberry (Kiteen), Bell-Irving (above Teigen, Teigen-Bowser, below Bowser), Bowser, Taft, Treaty, Teigen, Hodder, Kwinageese, Damdochax and upper Nass (above Damdochax).

Table 12. Steelhead spawner requirements, as a percentage of the maximum asymptotic adult production for the stock recruitment method, simple management rule, and the fully-seeded rearing habitat method (confirmed systems only).

	Required spawners at MSY (P_{MSY})		Required spawners for Simple Management Rule (35%)		Required spawners to fully seed rearing habitat	
	15.4%	10.4%	15.4%	10.4% Smolt-	15.4%	10.4%
	Smolt-	Smolt-	Smolt-	Adult	Smolt-	Smolt
	Adult	Adult	Adult		Adult	-Adult
Winter Populations						
Confirmed ¹	19%	23%	35%	35%	25%	37%
Sympatric						
Populations						
Confirmed ²	22%	25%	35%	35%	22%	48%
Summer						
Populations						
Confirmed ³	23%	22%	35%	35%	42%	62%

DISCUSSION

The Nass steelhead habitat capability model is a useful tool for improving understanding of Nass River steelhead. The model predicts the capacity of Nass River tributary habitat to produce steelhead smolts. This predictive ability is dependent on the empirical data and relationships used in the model. The model estimates 1,204 winter run spawners, 310 sympatric spawners, and 12,386 summer run spawners to fully seed the available fry habitat in confirmed steelhead producing systems. These estimates of spawner requirements were near to or in the zone for "routine fisheries management".

These interim spawner requirements do not account for uncertainty such as in sex ratios, disproportionate returns to tributary systems or variation in stock strength as discussed by Tautz et al. (1992) for Skeena River steelhead. Accordingly, the Nass estimates presented here should be used with caution and may best be considered minimums. Tautz et al. (1992) recommended an expansion factor of 1.52 for model-derived estimates of Skeena steelhead spawner requirements. It is not known if a similar expansion should be applied to Nass River steelhead. However, current harvest rates on Nass River steelhead are presumed to be quite low. Should harvest rates increase substantially, then the interim minimum spawner requirements for Nass steelhead should be reviewed.

Independent Petersen mark-recapture estimates of summer run escapement to the Nass River have been produced for 1997 to 2001. Estimates have ranged from 9,320 in 1999 to 12,802 in 1997. These estimates are close to the number of required spawners determined by the model, suggesting that the available habitat is near to fully seeded, with a spawner-to-spawner replacement of near 1:1. This is consistent with expectations for recruitment of steelhead given the extremely low marine survival rates observed in recent years. As ocean conditions improve, we should observe an increase in smolt-to-adult survival and higher adult production of Nass steelhead.

Physical Parameters of Model

The sensitivity analyses we performed suggest that of all physical parameters evaluated, the model is most sensitive to errors in alkalinity (Figure 6). The model requires alkalinity measures for each steelhead producing tributary. For the Nass model, these data were available for all major steelhead producing tributaries, with the exception of Ishkleenick. Alkalinity measures should be repeated for all major systems to examine interannual variability.

Low Flow Stage was the next most sensitive physical parameter in the model. Low Flow Stage (LFS) is assumed to be the mean monthly discharge (as a percent of MAD) for the late summer period when juvenile steelhead still occupy tributary fry/parr habitat. For the Nass River, this is assumed to be in September. Mean September discharge for WSC stations at Shumal, Surprise, Bowser, Craven and Lime, as a percentage of MAD, was 110% (range from 98% to 132%). These stations represent good geographic coverage of the Nass watershed and so variability among tributaries is likely to be relatively small (less than 20%). Additional WSC stations installed by Nisga'a Fisheries at Cranberry, Meziadin, Kwinageese, Zolzap, and

Diskangieq will eventually allow further refinement of this parameter. For now, however, potential errors in LFS are assumed to be relatively small.

Life-History Parameters of Model

Parken (1997b) provides a detailed dicussion of the life history components of the Nass model. Parken found that smolt-adult survival and egg-fry survival were the two most sensitive parameters. Only egg-fry survival influences the estimate of the required number of spawners to fully seed the available fry habitat. A wide range of egg-to-fry survival estimates exist in the literature and egg-to-fry survival is influenced by habitat quality (e.g. cover) and environmental factors (e.g. floods and droughts). As it is unlikely that estimates of egg-to-fry survival will ever be available for Nass steelhead, users of the model must recognize this as a critical parameter in the model.

Mean smolt age was the next most sensitive life history parameter. We used the conservative oldest values for mean smolt age in the model.

RECOMMENDATIONS

We recommend that the required number of spawners for confirmed Nass River steelhead systems, as predicted by the habitat model 6, be adopted as the minimum escapement goal for maximum production of Nass steelhead. Additional recommendations are:

- 1. Capacity estimates should be conservatively based on fourth order or larger streams until steelhead distributions can be further defined.
- 2. As a priority, steelhead presence and distribution should be confirmed or refuted for White River, Taylor River and Muskaboo River.
- 3. Data on Mean Annual Discharge from additional water gauging stations that have been installed by Nisga'a Fisheries at Meziadin, Kwinageese, Cranberry, Zolzap, and Diskangieq should be added to the model when available.
- 4. Low Flow Stage should be re-evaluated when data are available from the new survey stations.
- 5. Additional and repeated measures of alkalinity should be obtained for the major steelhead producing systems (Iknouk, Ishkheenickh, Kincolith, Ksedin, Tseax, Seaskinnish, Bell-Irving, Meziadin, Cranberry, Kiteen, Kwinageese, and Damdochax).
- 6. Capacity estimates should be conservatively based on the oldest mean smolt age calculations.
- 7. Mean smolt age should be determined for the 12 major stocks so that the model relies less on the pooled mean.
- 8. Escapement estimates of summer run steelhead should be derived every 3rd year using the fishwheels and mark-recapture.
- 9. Management of Nass River steelhead would benefit with the establishment of a summer run indicator stock where biological life history data (smolts out, adults back) could be obtained on an annual basis.
- 10. Field verification of steelhead presence in streams with MAD greater than 0.5m³s⁻¹.

LITERATURE CITED

- Aquatic Biophysical Maps. 1977. Resources Analysis Branch. Ministry of the Environment. Victoria, B.C.
- Atagi, D.Y. 1999. Memo. To R.S. Hooton, dated March 19, 1999. Re: Preliminary Nass steelhead fecundity relationship (1997 and 1998). Ministry of Environment, Lands and Parks, Smithers, B.C. File No. 34250-20/Steelhead/NAS/.
- Bisson, P.A., K. Sullivan and J.L. Nielsen. 1988. Channel hydraulics, habitat use, and body form of juvenile coho salmon, steelhead and cutthroat trout in streams. Trans. Am. Fish. Soc. 117: 262-273.
- Bjornn, T.C. and D.W. Reiser. 1991. Habitat requirements of salmonids in streams. <u>In</u> Meehan, W.R. (ed.). Influences of Forest and Rangeland Management on Salmonid Fishes and their Habitats. U.S. Department of Agriculture Forest Service. American Fisheries Society Special Publication 19.
- Bovee, K.D. 1982. A guide to stream habitat analysis using the instream flow incremental methodology. FWS/OBS-82/26. Idaho Coop. Fish and Wildl. Serv., Fort Collins, CO, USA.
- Bustard, D.R. and D.W. Narver. 1975. Aspects of the winter ecology of juvenile coho salmon (*Onchorynchus kisutch*) and steelhead trout (*Salmo gairdneri*). J. Fish. Res. Board Can. 32: 667-680.
- Clutter, R.I., and E.E. Whitesel. 1956. Collection and interpretation of sockeye salmon scales. International Pacific Salmon Commission Bulletin IX.
- FISS. 1991a. Fish Habitat Inventory and Information Program Stream Summary Catalogue: Subdistrict #3A, Lower Nass. Department of Fisheries and Oceans.
- FISS. 1991b. Fish Habitat Inventory and Information Program Stream Summary Catalogue: Subdistrict #3B, Upper Nass. Department of Fisheries and Oceans.
- Hooton, R.S. 1999. (Personal Communication; Section Head, Fisheries Branch, Ministry of Environment, Lands and Parks, Smithers, B.C.).
- Hooton, R.S., B.R. Ward, V.A. Lewynski, M.G. Lirette and A.R. Facchin. 1987. Age and growth of steelhead in Vancouver Island populations. Fisheries Branch, B.C. Ministry of Environment, Lands and Parks, Smithers, B.C. Fisheries Technical Circular No. 77.
- Horton, R.E. 1945. Erosional development of streams and their drainage basins. Bull. Geo. Soc. Am. 56: 275-370.

- Hume, J.M.B. and E.A. Parkenson. 1987. Effect of stocking density on the survival, growth and dispersal of steelhead trout (*Salmo gairdneri*). Can. J. Fish. Aquat. Sci. 44: 271-281.
- Jensen, A.J., and B.O. Johnsen. 1982. Difficulties in aging Atlantic salmon (*Salmo salar*) and brown trout (*S. trutta*) from cold rivers due to lack of scales as yearlings. Canadian Journal of Fisheries and Aquatic Sciences 39:321-325.
- Johnston, N.T., E.A. Parkinson, A.F. Tautz and B.R. Ward. 2002. A conceptual framework for the management of steelhead, *Oncorhynchus mykiss*. Fisheries Project Report No. RD101: 21 p. Province of BC. Ministry of Water, Land and Air Protection. BC Fisheries Branch.
- Lentsch, L.D., and J.S. Griffith. 1987. Lack of first-year annuli on scales: frequency of occurrence and predictability in trout of the western United States, pages 177-188. *In* R.C. Summerfelt and G.E. Hall, editors. The age and growth of fish. Iowa State University. Ames, Iowa.
- Lidstone, C. 1999. 1998 Nass River steelhead scale ageing. Report by Birkenhead Scale Analyses, Lone Butte, B.C. for Fisheries Branch, British Columbia Ministry of Environment, Lands and Parks, Smithers, B.C.
- Nass, B.L. 1997a. Adult and juvenile coho salmon enumeration and coded-wire tag recovery analysis for Zolzap Creek, BC, 1995. Can. Manusr. Rep. Fish. Aquat. Sci. 2423: ix + 41 p.
- Nass, B.L. 1997b. Adult and juvenile coho salmon enumeration and coded-wire tag recovery analysis for Zolzap Creek, BC, 1994. Can. Manusr. Rep. Fish. Aquat. Sci. 2420: viii + 54 p.
- NTC. 1994-98. Watershed Restoration Program reports submitted to Ministry of Environment, Lands and Parks. Smithers, BC.
- NTC. 1998a. Fish and fish habitat inventory of Kincolith watershed, 1996-97. Report prepared by LGL Limited and the Nisga'a Tribal Council for Ministry of Environment, Lands and Parks. Smithers, BC.
- NTC. 1998b. Fish and fish habitat inventory of Burton and Monkley watersheds, 1997. Report prepared by LGL Limited and the Nisga'a Tribal Council for Ministry of Environment, Lands and Parks. Smithers, BC.
- NTC. 1998c. Fish and fish habitat inventory of Greenville and Diskangieq watersheds, 1997. Report prepared by LGL Limited and the Nisga'a Tribal Council for Ministry of Environment, Lands and Parks. Smithers, BC.

- NTC. 1998d. Fish and fish habitat inventory of Gish, Chemainuk and Grease watersheds, 1997. Report prepared by LGL Limited and the Nisga'a Tribal Council for Ministry of Environment, Lands and Parks. Smithers, BC.
- NTC. 1998e. Fish and fish habitat inventory of Tseax and Vetter watersheds, 1997. Report prepared by LGL Limited and the Nisga'a Tribal Council for Ministry of Environment, Lands and Parks. Smithers, BC.
- NTC. 1998f. Fish and fish habitat inventory of Ksemamaith, Kwiniak, Ansedegan, Kwinyarh, and Ginlulak watersheds, 1997. Report prepared by LGL Limited and the Nisga'a Tribal Council for Ministry of Environment, Lands and Parks. Smithers, BC.
- NTC. 1998g. Fish and fish habitat inventory of Iknouk and Keaszoah watersheds, 1997. Report prepared by LGL Limited and the Nisga'a Tribal Council for Ministry of Environment, Lands and Parks. Smithers, BC.
- NTC. 1998h. Fish and fish habitat inventory of Cugiladap, Wegiladap, Giswatz, Wilyayaanooth, Inieth and Gingietl watersheds, 1997. Report prepared by LGL Limited and the Nisga'a Tribal Council for Ministry of Environment, Lands and Parks. Smithers, BC.
- Parken, C.K. 1997a. Water Survey of Canada stations pertaining to the Nass Habitat Capability Model. Skeena Fisheries Report SK#108. Report prepared by Cascadia Natural Resource Consulting for Ministry of Environment, Lands and Parks, Smithers, BC. 23 pp.
- Parken, C.K. 1997b. Nass River steelhead life history characteristics pertaining to the Nass Habitat Capability Model. Skeena Fisheries Report SK#110. Report prepared by Cascadia Natural Resource Consulting for Ministry of Environment, Lands and Parks, Smithers, BC. 62 pp.
- Parken, C.K. 1998. Mean smolt age estimation and under-aging bias of Nass River steelhead populations. British Columbia Ministry of Environment, Lands and Parks, Smithers, B.C. Fisheries Branch. Skeena Fisheries Report SK-117.
- Pojar, J., K. Klinka, and D.V. Meidinger. 1987. Biogeoclimatic ecosystem classification In British Columbia. For. Ecol. Manage. 22:119-154.
- Powers, P.D. and J.F. Orsborn. 1985. Analysis of barriers to upstream fish migration: an investigation of the physical and biological conditions affecting fish passage success at culverts and waterfalls. U.S. Department of Energy, Bonneville Power Administration. Project 82-14 Final Report. Portland, OR.
- Ptolemy, R.A. 1989. Effects of highway construction and mitigation on summer steelhead in the Coquihalla River, British Columbia. B.C. Fish. Proj. Rep. No. FAIU-14. Fish. Br., Victoria, BC. 210 p.

- Ptolemy, R.A. 1992. Maximum salmonid densities in fluvial habitats in British Columbia. PSARC Report. Fisheries Branch, Ministry of Environment, Lands and Parks, Victoria, B.C.
- Reiser, D. W. and R. T. Peacock. 1985. A technique for assessing upstream fish passage problems at small-scale hydropower developments. Pages 423-432. <u>In</u> F. W. Olson, R. G. White, and R. H. Hamre (eds). Symposium on small hydropower and fisheries. American Fisheries Society, Bethesda, Maryland.
- Roper, B.B., D.L. Scarnecchia and T.J. La Marr. 1994. Summer distribution of and habitat use by chinook salmon and steelhead within a major basin of the South Umpqua River, Oregon. Trans. Amer. Fish. Soc. 123: 298-308.
- Saimoto, R.K., and R.S. Saimoto. 1998. Bell-Irving/Bowser area reconnaissance level stream inventory. Report by SKR Environmental Consultants, Smithers, B.C. for Fisheries Branch, British Columbia Ministry of Environment, Lands and Parks, Smithers, B.C.
- Sebastian, D.C., R.A. Ptolemy and C.D. Tredger. 1991. Steelhead model component 2: Use of discharge to predict stream width and habitat area. Draft Report. Fisheries Branch, Ministry of Environment, Victoria, B.C.
- Sebastian, D.C. 1987. Steelhead production characteristics of the Cranberry River, Nass River system, 1986. Fisheries Project Report No. FIU-06, May, 1987.
- Sheppard, J.D. and J.H. Johnson. 1985. Probability of use for depth, velocity, and substrate by subyearling coho salmon and steelhead in Lake Ontario tributary streams. N. Amer. J. Fish. Manag. 5: 277-282.
- Strahler, A.N. 1957. Quantitative analysis of watershed geomorphology. Trans. Am. Geophys. Union 38: 913-920.
- Stuart, T. A. 1962. The leaping behaviour of salmon and trout at falls and obstructions. Department of Agriculture and Fisheries for Scotland, Freshwater and Salmon Fisheries Research Report 28, Edinburgh.
- Symons, P.E.K. 1979. Estimated escapement of Atlantic salmon (*Salmo Salar*) for maximum smolt production in rivers of different productivity. J. Fish. Res. Board. Can. 36: 132-140.
- Tautz, A.F., B.R. Ward and R.A. Ptolemy. 1992. Steelhead trout productivity and stream carrying capacity for rivers of the Skeena drainage. PSARC Working Paper S92-6 and 8. Fisheries Branch, Ministry of Environment, Lands and Parks, Victoria, B.C.
- Triton Environmental Consultants Ltd. 1994a. Damdochax Creek fisheries inventory. Prepared for Ministry of Environment, Lands and Parks, Smithers, B.C.

Triton Environmental Consultants Ltd. 1994b. Kwinageese River fisheries inventory. Prepared for Ministry of Environment, Lands and Parks, Smithers, B.C.

APPENDIX A

CALCULATION OF MEAN ANNUAL DISCHARGE FOR NASS RIVER SUB-WATERSHEDS

Appendix A. Estimates of mean annual discharge (MAD) for Nass River tributaries derived from Nass and Skeena Water Survey of Canada reference stations. Reference station data from Parkin 1997.								
		Reference Stn.	Reference Stn.	Reference Stn.	Nass Wshd	Nass Wshd	Nass Wshd	
Nass Watershed		Biogeoclimatic Zone			Biogeoclimatic Zone			
		5	· · · · · · · · · · · · · · · · · · ·	· · · · · ·			· · · · · /	
Kincolith	Lime Creek	CWHws	39.4	1.8	CWHws	225.9	10.4	
Kincolith	Patsey Creek	MH	4.7	0.2	CWHws	225.9	10.9	
Iknouk	Kitsumkalum	CWHws	2180.0	123.3	CWHws	112.4	6.4	
lknouk	Zymagotitz	CWHws	376.0	23.7	CWHws	112.4	7.1	
Keazoah	Kitsumkalum	CWHws	2180.0	123.3	CWHws	11.5	0.7	
Keazoah	Zymagotitz	CWHws	376.0	23.7	CWHws	11.5	0.7	
Anliyen (Greenville)	Kitsumkalum	CWHws	2180.0	123.3	CWHws	40.7	2.3	
Anliyen (Greenville)	Zymagotitz	CWHws	376.0	23.7	CWHws	40.7	2.6	
Diskangieq	Kitsumkalum	CWHws	2180.0	123.3	CWHws	36.4	2.1	
Diskangieq	Zymagotitz	CWHws	376.0	23.7	CWHws	36.4	2.3	
Anudol	Kitsumkalum	CWHws	2180.0	123.3	CWHws	123.7	7.0	
Anudol	Zymagotitz	CWHws	376.0	23.7	CWHws	123.7	7.8	
Inieth	Kitsumkalum	CWHws	2180.0	123.3	CWHws	9.5	0.5	
Inieth	Zymagotitz	CWHws	376.0	23.7	CWHws	9.5	0.6	
Cugiladap	Kitsumkalum	CWHws	2180.0	123.3	CWHws	6.2	0.3	
Cugiladap	Zymagotitz	CWHws	376.0	23.7	CWHws	6.2	0.4	
Wegiladap	Kitsumkalum	CWHws	2180.0	123.3	CWHws	17.0	1.0	
Wegiladap	Zymagotitz	CWHws	376.0	23.7	CWHws	17.0	1.1	
Wilyayaanooth	Kitsumkalum	CWHws	2180.0	123.3	CWHws	12.7	0.7	
Wilyayaanooth	Zymagotitz	CWHws	376.0	23.7	CWHws	12.7	0.8	
Giswatz	Kitsumkalum	CWHws	2180.0	123.3	CWHws/ICHmc	13.3	0.8	
Giswatz	Zymagotitz	CWHws	376.0	23.7	CWHws/ICHmc	13.3	0.8	
Gingietl	Kitsumkalum	CWHws	2180.0	123.3	CWHws/ICHmc	14.7	0.8	
Gingietl	Zymagotitz	CWHws	376.0	23.7	CWHws/ICHmc	14.7	0.9	
Gish	Kitsumkalum	CWHws	2180.0	123.3	CWHws/ICHmc	14.7	0.8	
Gish	Zymagotitz	CWHws	376.0	23.7	CWHws/ICHmc	14.7	0.9	
Chemainuk	Exchamsiks	CWHvm	370.0	43.3	CWHvm	58.1	6.8	
Chemainuk	Chatham Sd	CWHvh	60.3	7.2	CWHvm	58.1	6.9	
Burton	Exchamsiks	CWHvm	370.0	43.3	CWHvm	96.0	11.2	

Appendix A (cont).							
Nass Watershed		Reference Stn. Biogeoclimatic Zone	-	Reference Stn. MAD (m³/s)	Nass Wshd Biogeoclimatic Zone		Nass Wshd MAD (m³/s)
Burton	Chatham Sd	CWHvh	60.3	7.2	CWHvm	96.0	11.5
Monkley	Exchamsiks	CWHvm	370.0	43.3	CWHvm	35.7	4.2
Monkley	Chatham Sd	CWHvh	60.3	7.2	CWHvm	35.7	4.3
Chambers	Exchamsiks	CWHvm	370.0	43.3	CWHvm	89.9	10.5
Chambers		CWHvh	60.3	7.2	CWHvm	89.9	10.7
Welda	Exchamsiks	CWHvm	370.0	43.3	CWHvm	31.3	3.7
Welda	Chatham Sd	CWHvh	60.3	7.2	CWHvm	31.3	3.7
Quilgauw	Kitsumkalum	CWHws	2180.0	123.3	CWHws	37.0	2.1
Quilgauw	Zymagotitz	CWHws	376.0	23.7	CWHws	37.0	2.3
Ishkheenickhh	Kitsumkalum	CWHws	2180.0	123.3	CWHws	579.4	32.8
Ishkheenickhh	Zymagotitz	CWHws	376.0	23.7	CWHws	579.4	36.6
Ginlulak	Kitsumkalum	CWHws	2180.0	123.3	CWHws	43.0	2.4
Ginlulak	Zymagotitz	CWHws	376.0	23.7	CWHws	43.0	2.7
Kwiniak (Ksedin)	Kitsumkalum	CWHws	2180.0	123.3	CWHws	248.1	14.0
Kwiniak (Ksedin)	Zymagotitz	CWHws	376.0	23.7	CWHws	248.1	15.7
Ksemamaith	Kitsumkalum	CWHws	2180.0	123.3	CWHws	68.4	3.9
Ksemamaith	Zymagotitz	CWHws	376.0	23.7	CWHws	68.4	4.3
Ansedegan	Kitsumkalum	CWHws	2180.0	123.3	CWHws	28.5	1.6
Ansedegan	Zymagotitz	CWHws	376.0	23.7	CWHws	28.5	1.8
Kwinyarh	Kitsumkalum	CWHws	2180.0	123.3	CWHws	15.6	0.9
Kwinyarh	Zymagotitz	CWHws	376.0	23.7	CWHws	15.6	1.0
Zolzap	Kitsumkalum	CWHws	2180.0	123.3	CWHws	32.0	1.8
Zolzap	Zymagotitz	CWHws	376.0	23.7	CWHws	32.0	2.0
Tseax	Shumal	ICH / MC	18500.0	781.0	CWHws/ICHmc	608.3	25.7
Tseax	Zymagotitz	CWHws	376.0	23.7	CWHws/ICHmc	608.3	38.4
Seaskinnish	Shumal	ICH / MC	18500.0	781.0	CWHws/ICHmc	204.6	8.6
Seaskinnish	Zymagotitz	CWHws	376.0	23.7	CWHws/ICHmc	204.6	12.9
Gitwinksihlkw	Shumal	ICH / MC	18500.0	781.0	CWHws/ICHmc	7.0	0.3
Gitwinksihlkw		CWHws	376.0	23.7	CWHws/ICHmc	7.0	0.4
Shumal	Shumal	ICH / MC	18500.0	781.0	CWHws/ICHmc	99.6	4.2

Appendix A (cont).							
		Reference Stn.	Reference Stn.				Nass Wshd
Nass Watershed	Reference Station	Biogeoclimatic Zone	Area (km ²)	MAD (m ³ /s)	Biogeoclimatic Zone	Area (km ²)	MAD (m³/s)
Shumal	Zymagotitz	CWHws	376.0	23.7	CWHws/ICHmc	99.6	6.3
Kwinamuck	Shumal	ICH / MC	18500.0	781.0	CWHws/ICHmc	61.5	2.6
Kwinamuck	Zymagotitz	CWHws	376.0	23.7	CWHws/ICHmc	61.5	3.9
Kwinatahl	Shumal	ICH / MC	18500.0	781.0	CWHws/ICHmc	306.1	12.9
Kwinatahl	Zymagotitz	CWHws	376.0	23.7	CWHws/ICHmc	306.1	19.3
Kshadin	Shumal	ICH / MC	18500.0	781.0	CWHws/ICHmc	105.1	4.4
Kshadin	Zymagotitz	CWHws	376.0	23.7	CWHws/ICHmc	105.1	6.6
Tchitin	Bowser	ICHvc/ESSF	5160.0	288.7	ICHmc/ESSFwv	248.2	13.9
Tchitin	Surprise	ICHvc/ESSF	221.0	15.0	ICHmc/ESSFwv	248.2	16.9
Kinskutch	Bowser	ICHvc/ESSF	5160.0	288.7	ICHmc/ESSFwv	476.9	26.7
Kinskutch	Surprise	ICHvc/ESSF	221.0	15.0	ICHmc/ESSFwv	476.9	32.4
Paw	Bowser	ICHvc/ESSF	5160.0	288.7	ICHmc/ESSFwv	176.7	9.9
Paw	Surprise	ICHvc/ESSF	221.0	15.0	ICHmc/ESSFwv	176.7	12.0
Brown Bear	Bowser	ICHvc/ESSF	5160.0	288.7	ICHmc	227.7	12.7
Brown Bear	Surprise	ICHvc/ESSF	221.0	15.0	ICHmc	227.7	15.5
Van Dyke	Bowser	ICHvc/ESSF	5160.0	288.7	ICHmc	34.0	1.9
Van Dyke	Surprise	ICHvc/ESSF	221.0	15.0	ICHmc	34.0	2.3
White	Bowser	ICHvc/ESSF	5160.0	288.7	ICHmc	954.0	53.4
White	Surprise	ICHvc/ESSF	221.0	15.0	ICHmc	954.0	64.8
Meziadin	Bowser	ICHvc/ESSF	5160.0	288.7	ICHmc	719.3	40.2
Meziadin	Surprise	ICHvc/ESSF	221.0	15.0	ICHmc	719.3	48.9
Cranberry Main	Kispiox	ICHmc	1870.0	45.0	ICHmc/ESSFwv	974.8	23.5
Cranberry Main	Shumal	ICH / MC	18500.0	781.0	ICHmc/ESSFwv	974.8	41.2
Cranberry – Kiteen	Kispiox	ICHmc	1870.0	45.0	CWHws/ICHmc	885.3	21.3
Cranberry – Kiteen	Shumal	ICH / MC	18500.0	781.0	CWHws/ICHmc	885.3	37.4
Bell-Irving (below Bowser)	Bowser	ICHvc/ESSF	5160.0	288.7	ICHvc/ESSFwv	4954.0	277.2
Bell-Irving (below Bowser)	Surprise	ICHvc/ESSF	221.0	15.0	ICHvc/ESSFwv	4954.0	336.5
Bell-Irving (below Teigen)	Bowser	ICHvc/ESSF	5160.0	288.7	ICHvc/ESSFwv	4498.0	251.7
Bell-Irving (below Teigen)	Surprise	ICHvc/ESSF	221.0	15.0	ICHvc/ESSFwv	4498.0	305.5
Bell-Irving (above Teigen)	Bowser	ICHvc/ESSF	5160.0	288.7	ICHvc/ESSFwv	1295.8	72.5
Bell-Irving (above Teigen)	Surprise	ICHvc/ESSF	221.0	15.0	ICHvc/ESSFwv	1295.8	88.0

Appendix A (cont).							
		Reference Stn.	Reference Stn.				Nass Wshd
Nass Watershed	Reference Station	Biogeoclimatic Zone	Area (km ²)	MAD (m ³ /s)	Biogeoclimatic Zone	Area (km ²)	MAD (m ³ /s)
Bowser	Bowser	ICHvc/ESSF	5160.0	288.7	ICHvc/ESSFwv	1262.0	70.6
Bowser	Surprise	ICHvc/ESSF	221.0	15.0	ICHvc/ESSFwv	1262.0	85.7
Taft	Bowser	ICHvc/ESSF	5160.0	288.7	ICHvc/ESSFwv	474.0	26.5
Taft	Surprise	ICHvc/ESSF	221.0	15.0	ICHvc/ESSFwv	474.0	32.2
Treaty	Bowser	ICHvc/ESSF	5160.0	288.7	ICHvc/ESSFwv	427.1	23.9
Treaty	Surprise	ICHvc/ESSF	221.0	15.0	ICHvc/ESSFwv	427.1	29.0
Teigen	Bowser	ICHvc/ESSF	5160.0	288.7	ICHvc/ESSFwv	351.7	19.7
Teigen	Surprise	ICHvc/ESSF	221.0	15.0	ICHvc/ESSFwv	351.7	23.9
Hodder	Bowser	ICHvc/ESSF	5160.0	288.7	ICHvc/ESSFwv	72.3	4.0
Hodder	Surprise	ICHvc/ESSF	221.0	15.0	ICHvc/ESSFwv	72.3	4.9
Kwinageese	Bowser	ICHvc/ESSF	5160.0	288.7	ESSFwv	552.3	30.9
Kwinageese	Surprise	ICHvc/ESSF	221.0	15.0	ESSFwv	552.3	37.5
Saladamis	Bowser	ICHvc/ESSF	5160.0	288.7	ICHmc/ESSFwv	75.0	4.2
Saladamis	Surprise	ICHvc/ESSF	221.0	15.0	ICHmc/ESSFwv	75.0	5.1
Sanyam	Bowser	ICHvc/ESSF	5160.0	288.7	ICHmc/ESSFwv	96.6	5.4
Sanyam	Surprise	ICHvc/ESSF	221.0	15.0	ICHmc/ESSFwv	96.6	6.6
Sanskisoot	Bowser	ICHvc/ESSF	5160.0	288.7	ICHmc/ESSFwv	103.3	5.8
Sanskisoot	Surprise	ICHvc/ESSF	221.0	15.0	ICHmc/ESSFwv	103.3	7.0
Taylor	Bowser	ICHvc/ESSF	5160.0	288.7	ICHmc/ESSFwv	753.2	42.1
Taylor	Surprise	ICHvc/ESSF	221.0	15.0	ICHmc/ESSFwv	753.2	51.2
Sallysout	Bowser	ICHvc/ESSF	5160.0	288.7	ICHmc/ESSFwv	333.2	18.6
Sallysout	Surprise	ICHvc/ESSF	221.0	15.0	ICHmc/ESSFwv	333.2	22.6
Vile	Bowser	ICHvc/ESSF	5160.0	288.7	ICHmc/ESSFwv	188.0	10.5
Vile	Surprise	ICHvc/ESSF	221.0	15.0	ICHmc/ESSFwv	188.0	12.8
Kotsinka	Bowser	ICHvc/ESSF	5160.0	288.7	ICHmc/ESSFwv	312.4	17.5
Kotsinka	Surprise	ICHvc/ESSF	221.0	15.0	ICHmc/ESSFwv	312.4	21.2
Damdochax	Bowser	ICHvc/ESSF	5160.0	288.7	ICHmc/ESSFwv	737.4	41.3
Damdochax	Surprise	ICHvc/ESSF	221.0	15.0	ICHmc/ESSFwv	737.4	50.1
Muskaboo	Bowser	ICHvc/ESSF	5160.0	288.7	ICHmc/ESSFwv	614.9	34.4
Muskaboo	Surprise	ICHvc/ESSF	221.0	15.0	ICHmc/ESSFwv	614.9	41.8
Panorama	Bowser	ICHvc/ESSF	5160.0	288.7	ICHmc/ESSFwv	90.6	5.1

Appendix A (cont).							
		Reference Stn.	Reference Stn.	Reference Stn.			Nass Wshd
Nass Watershed	Reference Station	Biogeoclimatic Zone	Area (km ²)	MAD (m ³ /s)	Biogeoclimatic Zone	Area (km ²)	MAD (m³/s)
Panorama	Surprise	ICHvc/ESSF	221.0	15.0	ICHmc/ESSFwv	90.6	6.2
Konigus	Bowser	ICHvc/ESSF	5160.0	288.7	ICHmc/ESSFwv	471.7	26.4
Konigus	Surprise	ICHvc/ESSF	221.0	15.0	ICHmc/ESSFwv	471.7	32.0
Upper Nass	Bowser	ICHvc/ESSF	5160.0	288.7	ICHmc/ESSFwv	735.6	41.2
Upper Nass	Surprise	ICHvc/ESSF	221.0	15.0	ICHmc/ESSFwv	735.6	50.0

APPENDIX B

KNOWN AND PREDICTED (SUSPECTED) STEELHEAD PRODUCING TRIBUTARIES IN THE NASS WATERSHED

Appendix B. Stream or	der and accessible f use by steelhead j		lass F	River tr	ibutarie	s, as well	as
		Watershed				Use Predicted from MAD	Steelhead/ Rainbow present (confirmed)
	Watershed	Code	(КПТ)	(11/5)	Order ²		
Winter Populations							
1	Kincolith	70-0100	225.9	10.9	4	Y	Y
	lknouk	70-0100	112.4		4	Y	Y
	Keaszoah	10 0000	11.5	0.7	3	Y	Y
	Anliyen (Greenville)		40.7	2.6	4	Ý	Ŭ
	Diskangieq		36.4	2.3	4	Y	U
	Anudol		123.7	7.8	5	Y	N
	Inieth		9.5	0.6	3	Ý	N
	Cugiladap		6.2	0.4	3	N	N
	Wegiladap		17.0	1.1	4	Y	N
	Wilyayaanooth		12.7	0.8	3	Y	RB
	Giswatz		13.3	0.8	3	Y	N
12	Gingietl		14.7	0.9	3	Y	RB
	Gish		14.7	0.9	3	Y	RB
14	Chemainuk		58.1	6.9	4	Y	N
15	Burton		96.0	11.5	5	Y	RB
16	Monkley		35.7	4.3	4	Y	RB
17	Chambers	70-0200	89.9	10.7	4	Y	Y
18	Welda		31.3	3.7	3	Y	U
19	Quilgauw		37.0	2.3	4	Y	U
	Ishkheenickhh	71-0000	579.4	36.6	7	Y	Y
21	Ginlulak	70-1200	43.3	2.7	4	Y	N
22	Kwiniak (Ksedin)	70-1400	248.1	15.7	5	Y	Y
23	Ksemamaith	70-1500	68.4	4.3	4	Y	Y
	Ansedegan	70-1800	28.5	1.8	4	Y	U
25	Kwinyarh	70-2000	15.6	1.0	3	Y	Y
26	Zolzap	70-2300	32.0	2.0	5	Y	Y
Sympatric Populations							
	Tseax	70-2700	608.3		6	Y	Y
	Seaskinnish	70-2900	204.6		5	Y	Y
29	Gitwinksihlkw Ck		7.0	0.4	3	N	N

Appendix B (cont)							
				MAD		Steelhead	Steelhead/
				1			Rainbow
		Watershed	Area	(m ³ /s	Stream	Predicted	present
	Watershed	Code	(km^2)				(confirmed) ⁵
Summer Populations							
30	Shumal	70-2600	99.6	6.3	4	Y	U
31	Kwinamuck		61.5	3.9	4	Y	N
32	Kwinatahl		306.1	19.3	6	Y	RB
33	Kshadin		105.1	6.6	5	Y	U
34	Tchitin	70-3500	248.2	16.9	6	Y	Y
35	Kinskuch	72-0000	476.9	32.4	5	Y	Y
36	Paw	70-4000	176.7	12.0	6	Y	U
37	Brown Bear	70-3900	227.7	15.5	4	Y	Y
38	Van Dyke Ck		34.1	2.3	4	Y	U
39	White	74-0000	954.0	64.8	6	Y	N
40	Meziadin		719.3	48.9	6	Y	Y
41	Cranberry Main	73-0000	974.8	41.2	7	Y	Y
42	Cranberry-Kiteen		885.5	37.4	7	Y	Y
	Bell-Irving below						
43	Bowser	76-0000	4954.0	336.5	7	Y	Y
	Bell-Irving (Bowser						
44	to Teigen)		4498.0	305.5	7	Y	Y
	Bell-Irving (above						
	Teigen)		1295.8		7	Y	Y
	Bowser		1262.0		7	Y	Y
	Taft		474.0		6	Y	Y
	Treaty		427.1		6	Y	Y
49	Teigen		351.7	23.9	6	Y	Y
50	Hodder		72.3	4.9	5	Y	Y
51	Kwinageese	70-4500	552.3		6	Y	Y
	Saladamis	70-4600	75.0	5.1	5	Y	U
53	Sanyam	70-4700	96.6	6.6	5	Y	U
54	Sanskisoot	70-4800	103.3	7.0	5	Y	U
	Taylor	77-0000	753.2		7	Y	N
	Sallysout		333.2		6	Y	U
	Vile	70-5200	188.0		5	Y	U
58	Kotsinka	70-5300	312.4	21.2	5	Y	U
	Damdochax	78-0000	737.4		7	Y	Y
	Muskaboo	79-0000	614.9		6	Y	N
61	Panorama	70-5600	90.6	6.2	5	Y	N
	Konigus		471.7	32.0	6	Y	N
63	Upper Nass		735.6	50.0	6	Y	Y

APPENDIX C

LISTING OF KNOWN BARRIERS TO STEELHEAD WITHIN THE NASS DRAINAGE

Watershed	Longitude	Latitude	Height (metres)	Distance (metres) from Stream Mouth
Ansedegan	-129.3544	55.12854	7	2008
	-129.355	55.12936	4	1909
	-129.3547	55.12891	3	1963
	-129.3544	55.12854	6	2008
Anudol	-129.5231	55.17048	5	16123
	-129.5223	55.16903	2	15952
	-129.5192	55.16482	3	15432
	-129.5174	55.161	4	14944
	-129.5194	55.15826	2	14576
	-129.5053	55.09959	2	6412
	-129.527	55.12362	6	10089
	-129.5269	55.12321	3	10030
	-129.5202	55.12225	3	9471
Burton	-129.8626	54.95412	8	418
Chambers	-130.0313	54.89061	8	6001
Chemainuk	-129.1398	55.28621	1	9769
	-129.1593	55.28764	4	11354
	-129.1593	55.28765	3	11354
	-129.1398	55.2862	3	9769
Diskangieq	-129.5938	55.10128	4	11203
	-129.5703	55.09481	3	9376
	-129.5712	55.09485	4	9435
	-129.5703	55.09481	4	9376
Ginlulak	-129.4197	55.04218	8	5664
Greenville	-129.6411	55.05008	5	8415
	-129.6404	55.03215	2	6109
	-129.6292	55.02614	3	4807
	-129.6281	55.0247	2	4630
	-129.6411	55.05008	3	8415
	-129.639	55.04855	8	8184
	-129.6333	55.0271	3	5122
	-129.634	55.0271	2	5164
Ishkheenickhh	-129.5636	54.899170 2	5	13863
	-129.5986	54.78937	2	29816

Appendix C. Listing of known barriers to steelhead within the Nass dra	inage.
--	--------

Appendix C (cont.)			
Watershed	Longitude	Latitude	Height (metres)	Distance (metres) from Stream Mouth
Kincolith	-129.5841	55.20763	8	41292
	-129.5844	55.2093	6	41315
	-129.5875	55.20735	8	40967
	-129.6543	55.18825	7	35657
	-129.6574	55.18666	5	35425
	-129.6886	55.175900 1	5	33602
	-129.6857	55.17207	3	34123
	-129.6851	55.17157	2	34196
	-129.7312	55.18048	7	29757
	-129.7425	55.168500 1	3	27809
	-129.744	55.150970 1	3	25604
	-129.7569	55.126640 1	5	22724
	-129.7643	55.127400 1	5	22132
	-129.7799	55.11672	4	20300
	-129.7818	55.11596	3	20208
	-129.5815	55.20805	4	41447
Ksemamaith	-129.3525	55.09492	2	4957
	-129.3497	55.0945	2	5135
	-129.3496	55.09432	3	5167
	-129.3874	55.0935	4	2086
	-129.3797	55.09232	2	2764
	-129.3769	55.09142	2	2968
Kwiniak	-129.3684	55.03439	2	8152
Kwinyarh	-129.3203	55.14156	4	1717
Shumal	-129.2725	55.2646	3	12859
	-129.2725	55.2646	5	12859
	-129.2743	55.26208	6	12946
	-129.322	55.26113	3	16292
	-129.3242	55.26063	4	16430
Tseax	-129.0323	55.1769	3	9602
	-129.0374	55.17947	3	9112
	-129.0188	55.16783	5	11477
	-128.9792	55.13797	3	15992
	-128.9826	55.13786	3	15773

Appendix C (cont.)				
Watershed	Longitude	Latitude	Height (metres)	Distance (metres) from Stream Mouth	
Welda	-129.8735	54.941910 1	5	990	
Gingietl	-129.2912	55.193210 1	5	1272	
	-129.2912	55.19321	8	1272	
Wilyayaanooth	-129.3783	55.16856	7	902	
Cranberry	-128.6003	55.5965	8	25239	
	-128.4569	55.61805	3	43832	
Kiteen	-128.6496	55.23669	2	44875	
Kshadin	-129.0055	55.42896	2	153	
	-129.0105	55.43233	4	675	
	-129.0147	55.4312	2	983	
	-129.0146	55.43116	2	983	
	-129.0165	55.43246	4	1384	
	-129.0191	55.43563	4	2014	
	-129.0184	55.43216	2	1391	
	-129.0472	55.4402	4	3884	
	-129.0531	55.4434	6	4450	
	-129.0554	55.44421	2	4628	
	-129.0623	55.44654	6	5174	
	-129.0636	55.44736	2	5298	
	-129.0636	55.44734	2	5296	
Kwinatahl	-129.0928	55.3894	2	8615	
	-129.141	55.41749	2	13628	
	-129.147	55.41988	6	14167	
	-129.1483	55.421290 1	5	14352	
Seaskinnish	-129.0257	55.2858	2	4811	
	-128.9917	55.30999	2	9026	
	-128.9946	55.30807	8	8742	

APPENDIX D

ACCESSIBLE LENGTH OF STREAM LESS THAN 8% GRADIENT AND FOR THIRD AND FOURTH ORDER OR GREATER WATERSHEDS WITHIN THE NASS WATERSHED

Appendix D. Accessible stream length by gradient class and stream order for Nass River tributaries.										
Nass	River tri	butaries). 							
						L				
					Accessit					
Stream Order::	3	3	4	4	5	5	6	6	7	7
Gradient (%)::	0-4	4-8	0-4	4-8	0-4	4-8	0-4	4-8	0-4	4-8
Winter Populations										
Kincolith	1400	1560	27330	480	0	0	0	0	0	0
lknouk	780	650	23000	1370	0	0	0	0	0	0
Keaszoah	650	120	0	0	0	0	0	0	0	0
Anliyen (Greenville)	4400	1030	2480	0	0	0	0	0	0	0
Diskangieq	0	0	8160	800	0	0	0	0	0	0
Anudol	0	0	0	0	6380	30	0	0	0	0
Inieth	480	280	0	0	0	0	0	0	0	0
Cugiladap	980	240	0	0	0	0	0	0	0	0
Wegiladap	0	0	770	420	0	0	0	0	0	0
Wilyayaanooth	570	200	0	0	0	0	0	0	0	0
Giswatz	980	240	0	0	0	0	0	0	0	0
Gingietl	610	490	0	0	0	0	0	0	0	0
Gish	5070	100	0	0	0	0	0	0	0	0
Chemainuk	4400	1000	9360	290	0	0	0	0	0	0
Burton	0	0	0	0	220	60	0	0	0	0
Monkley	1820	760	3110	1900	0	0	0	0	0	0
Chambers	2950	1090	5970	0	0	0	0	0	0	0
Welda	4930	3090	0	0	0	0	0	0	0	0
Quilgauw	2640	410	6980	50	0	0	0	0	0	0
Ishkheenickhh	15430	6800	19010	7610	19320	3690	10410	0	24290	120
Ginlulak	2260	970	3580	10	0	0	0	0	0	0
Kwiniak (Ksedin)	7570	6000	16620	3130	12420	0	0	0	0	0
Ksemamaith	600	1440	2000	1000	0	0	0	0	0	0
Ansedegan	1310	310	1410	80	0	0	0	0	0	0
Kwinyarh	1020	500	0	0	0	0	0	0	0	0
Zolzap	2900	310	1500	530	4420	0	0	0	0	0
2012ap	2300	510	1300	550	4420	0	0	0	0	0
Total	63750	27590	131280	17670	42760	3780	10410	0	24290	120
Sympatric Populations										
Tseax	3450	3550	0	0	15890	750	130	0	0	0
Seaskinnish	0	0	40	0	8350	320	0	0	0	0
Gitwinksihlkw Ck	780	290	0	0	0	0	0	0	0	0
Total	4230	3840	40	0	24240	1070	130	0	0	0

Appendix D. (cont).				A	sible Lon	ath (m)				
Stream Order::	3	3	4	Access 4	sible Leng	<u>gin (m)</u> 5	6	6	7	7
	0-4		<u> </u>	4 4-8	0-4		0-4	4-8	0-4	4-8
Gradient (%)::	0-4	4-0	0-4	4-0	0-4	4-0	0-4	4-0	0-4	4-0
Summer Populations										
Shumal	130	270	14430	1530	0	0	0	0	0	0
Kwinamuck	0	0	0	0	0	0	0	0	0	0
Kwinatahl	0	0	0	0	0	0	8380	230	0	0
Kshadin	0	0	0	0	20	50	0	0	0	0
Tchitin	1160	840	0	0	0	0	16820	170	0	0
Kinskuch	20	0	0	0	1500	0	0	0	0	0
Paw	16410	4690	13330	1540	22130	3530	2180	380	0	0
Brown Bear	0	0	300	0	0	0	0	0	0	0
Van Dyke Ck	0	0	400	0	0	0	0	0	0	0
White	0	0	0	0	29140	1140	21240	0	0	0
Meziadin	0	0	0	0	0	0	8120	0	0	0
Cranberry Main	0	0	0	0	0	0	75600	0	3600	0
Cranberry-Kiteen	0	0	0	0	0	0	5660	200	43460	0
Bell-Irving below										
Bowser	0	0	0	0	0	0	0	0	35680	0
Bell-Irving (Bowser										
to Teigen)	0	0	0	0	0	0	9140	800	63200	0
Bell-Irving (above										
Teigen)	0	0	0	0	0	0	35710	0	25050	0
Bowser	0	0	0	0	2420	560	29280	0	4640	0
Taft	0	0	0	0	0	0	23870	0	0	0
Treaty	0	0	0	0	8720	790	20180	0	0	0
Teigen	0	0	0	0	24380	2150	19490	0	0	0
Hodder	0	0	0	0	13280	3960	0	0	0	0
Kwinageese	0	0	0	0	22140	4750	11950	170	0	0
Saladamis	0	0	0	0	8620	2820	0	0	0	0
Sanyam	0	0	0	0	260	80	0	0	0	0
Sanskisoot	0	0	0	0	8740	2740	0	0	0	0
Taylor	0	0	0	0	21900	5930	36300	0	11570	0
Sallysout	0	0	0	0	0	0	1370	300	0	0
Vile	0	0	0	0	19240	360	0	0	0	0
Kotsinka	0	0	0	0	10390	110	0	0	0	0
Damdochax	0	0	0	0	25840	860	18380	0	12160	0
Muskaboo	0	0	0	0	15030	550	44950	0	0	0
Panorama	0	0	0	0	10000	6020	0	0	0	0
Konigus	0	0	0	0	0	0	690	0	0	0
Upper Nass	0	0	0	0	27290	8420	33900	0	0	0
	0	0	<u> </u>	0	21230	0720	00000	0		0
Total	17720	5800	28460	3070	271080	44820	423210	2250	199360	0

APPENDIX E

PREDICTED WIDTH, BY STREAM ORDER FOR NASS WATERSHEDS

Watershed	Actual W Width (m)	Pred. Width (Main Order)	Pred. Width (Main Order- 1)	MAD (Main Order- 1)	Pred. Width (Main Order- 2)	MAD (Main Order- 2)	Pred. Width (Main Order- 3)	MAD (Main Order- 3)	Pred. Width (Main Order- 4)	MAD (Main Order- 4)
Watershed	(111)	Older)	· · /	- ')	۷)	۷)	- 3)	- 5)		
Winter Populations										
1Kincolith	28.0	18.9	9.4	2.9	0.0	0.0	0.0	0.0	0.0	0.0
2lknouk	19.1	15.1	7.5	1.9	0.0	0.0	0.0	0.0	0.0	
3Keazoah	5.2	4.6	0.0	0.0	0.0	0.0	0.0		0.0	0.0
Anliyen										
4(Greenville)	11.2	8.9	4.4	0.7	0.0	0.0	0.0	0.0	0.0	0.0
5Diskangieq	13.5	8.4	4.2	0.6	0.0	0.0	0.0	0.0	0.0	0.0
6Anudol	16.6	15.9	7.9	2.1	4.0	0.6	0.0	0.0	0.0	0.0
7Inieth	3.4	4.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
8Cugiladap	6.5	3.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
9Wegiladap	10.3	5.6	2.8	0.3	0.0	0.0	0.0	0.0	0.0	0.0
10Wilyayaanooth	6.1	4.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
11Giswatz	9.6	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
12Gingietl	11.8	5.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
13Gish	3.2	5.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
14Chemainuk		14.9	7.5	1.8	0.0	0.0	0.0		0.0	0.0
15Burton	19.3	19.4	9.7	3.0	4.9	0.8	0.0		0.0	
16Monkley	17.7	11.6	5.8	1.1	0.0	0.0	0.0	0.0	0.0	
17Chambers	30.0	18.8	9.4	2.9	0.0	0.0	0.0	0.0	0.0	
18Welda		10.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
19Quilgauw	11.1	8.4	4.2	0.6	0.0	0.0	0.0		0.0	0.0
20Ishkheenickhh		35.6	17.8	9.7	8.9	2.6	4.4	0.7	2.2	0.2
21Ginlulak	36.8	9.1	4.6	0.7	0.0	0.0	0.0	0.0	0.0	0.0
22Kwiniak (Ksedin)	29.8	22.8	11.4	4.2	5.7	1.1	0.0	0.0	0.0	0.0
23Ksemamaith	10.7	11.6	5.8	1.1	0.0	0.0	0.0	0.0	0.0	0.0
24Ansedegan	7.5	7.4	3.7	0.5	0.0	0.0	0.0		0.0	
25Kwinyarh		5.4	0.0	0.0	0.0		0.0		0.0	
26Zolzap		7.8	3.9	0.5	2.0	0.1	0.0	0.0	0.0	0.0
Sympatric										
Populations										
		20 5	10.0	10.0		07	4.0	07		0.0
27Tseax	10.0	36.5	18.3	10.2	9.1	2.7	4.6		0.0	
28Seaskinnish	10.0	16.7	8.4	2.3	4.2	0.6	0.0		0.0	
29Gitwinksihlkw Ck	5.0	3.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Summer Populations										
20Shumel		11 E	57	1 1	0.0	0.0	0.0	0.0	0.0	0.0
30Shumal	0 1	11.5	5.7	1.1	0.0		0.0		0.0	
31Kwinamuck	8.1	8.9	4.5	0.7	0.0	0.0	0.0	0.0	0.0	0.0

Appendix E. Predicted width, by stream order, for Nass watersheds.

Appendix E (cont).										
			Pred.		Pred.		Pred.		Pred.	
	Actual	Pred.	Width	MAD	Width	MAD	Width	MAD	Width	MAD
	W	Width	(Main	(Main	(Main	(Main	(Main	(Main	(Main	(Main
	Width	(Main	Order-	•	Order-	Order-			Order-	Order-
Watershed	(m)	Order)	1)	1)	2)	2)	3)	3)	4)	4)
valeisileu	(111)	Oldel)	1)	- 1)	۷)	۷)	- 3)	- 3)	+)	4)
32Kwinatahl	12.2	20.7	10.3	3.4	5.2	0.9	2.6	0.2	0.0	0.0
33Kshadin	5.9	11.8	5.9	1.2	3.0	0.3	0.0	0.0	0.0	0.0
34Tchitin	12.9	18.5	9.3	2.8	4.6	0.7	2.3	0.2	0.0	0.0
35Kinskuch	24.2	26.1	13.0	5.3	6.5	1.4	0.0	0.0	0.0	0.0
36Paw		15.5	7.8	2.0	3.9	0.5	1.9	0.1	0.0	0.0
37Brown Bear		17.7	8.9	2.6	0.0	0.0	0.0	0.0	0.0	0.0
38Van Dyke Ck		6.6	3.3	0.4	0.0	0.0	0.0	0.0	0.0	0.0
39White		37.4	18.7	10.7	9.4	2.8	4.7	0.8	0.0	0.0
40Meziadin		32.3	16.2	8.1	8.1	2.1	4.0	0.6	0.0	0.0
41Cranberry Main	50.0	37.9	18.9	10.9	9.5	2.9	4.7	0.8	2.4	0.2
Cranberry-										
42Kiteen		36.0	18.0	9.9	9.0	2.6	4.5	0.7	2.3	0.2
Bell-Irving below										
43Bowser	70.0	88.6	44.3	55.3	22.2	14.7	11.1	3.9	5.5	1.0
Bell-Irving										
(Bowser to										
44Teigen)	50.3	84.3	42.1	50.2	21.1	13.4	10.5	3.6	5.3	0.9
Bell-Irving										
45(above Teigen)		44.0	22.0	14.5	11.0		5.5		2.7	0.3
46Bowser		43.3	21.7	14.1	10.8		5.4	1.0	2.7	0.3
47Taft	30.0	26.0	13.0	5.3	6.5		3.2		0.0	
48Treaty	29.3	24.6	12.3	4.8	6.1	1.3	3.1	0.3	0.0	0.0
49Teigen	20.0	22.2	11.1	3.9	5.6		2.8		0.0	0.0
50Hodder	12.2	9.7	4.9	0.8	2.4		0.0		0.0	0.0
51Kwinageese	21.0	28.1	14.1	6.2	7.0	1.6	3.5		0.0	0.0
52Saladamis		9.9	5.0	0.8	2.5		0.0		0.0	
53Sanyam		11.3	5.7	1.1	2.8	0.3	0.0	0.0	0.0	0.0
54Sanskisoot		11.7	5.9	1.2	2.9	0.3	0.0	0.0	0.0	0.0
55Taylor		33.1	16.5	8.4	8.3	2.2	4.1	0.6	2.1	0.2
56Sallysout		21.6	10.8	3.7	5.4	1.0	2.7	0.3	0.0	0.0
57Vile		16.0	8.0	2.1	4.0	0.6	0.0		0.0	
58Kotsinka		20.9	10.4	3.5	5.2	0.9	0.0	0.0	0.0	0.0
59Damdochax	34.9	32.7	16.4	8.3	8.2	2.2	4.1	0.6	2.0	0.2
60Muskaboo		29.8	14.9	6.9	7.4	1.8	3.7	0.5	0.0	0.0
61 Panorama		10.9	5.5	1.0	2.7	0.3	0.0		0.0	0.0
62Konigus		25.9	13.0	5.3	6.5		3.2	0.4	0.0	0.0
63Upper Nass		32.7	16.3	8.2	8.2	2.2	4.1	0.6	0.0	0.0

APPENDIX F

THEORETICAL USEABLE WIDTH AND USEABLE AREA FOR NASS WATERSHEDS

Watershed	Low Flow Stage		neor. %			,	Theo	retical l		e Width	、	Theoretical Useable Area (m ²)	Theoretical Useable Area (m ²)
-	%MAD	Main Order	Main Ord-1	Main Ord-2	Main Ord-3	Main Ord-4	3 rd ord	4 th ord	5 th Ord	^{6th} Ord	7 th Ord	>3 rd order	>4 th order
Winter Populations													
1Kincolith	110	18%	25%	0%	0%	0%	2.3	3.4	0.0	0.0	0.0	100835	93938
2lknouk	110	20%	27%	0%	0%	0%	2.0	3.0	0.0	0.0	0.0	76472	73570
3 <mark>Keazoah</mark>	110	31%	0%	0%	0%	0%	1.4	0.0	0.0	0.0	0.0	1099	0
4Anliyen (Greenville)	110	25%	31%	0%	0%	0%	1.4	2.2	0.0	0.0	0.0	13124	5570
5Diskangieq	110	26%	32%	0%	0%	0%	1.3	2.2	0.0	0.0	0.0	19417	19417
6Anudol	110	20%	26%	32%	0%	0%	1.3	2.1	3.1	0.0	0.0	19857	19857
7Inieth	110	32%	0%	0%	0%	0%	1.3	0.0	0.0	0.0	0.0	1002	0
8Cugiladap	110	33%	0%	0%	0%	0%	1.1	0.0	0.0	0.0	0.0	1337	0
9Wegiladap	110	30%	34%	0%	0%	0%	1.0	1.7	0.0	0.0	0.0	1976	1976
10Wilyayaanooth	110	31%	0%	0%	0%	0%	1.5	0.0	0.0	0.0	0.0	1142	0
11Giswatz	110	31%	0%	0%	0%	0%	1.5	0.0	0.0	0.0	0.0	1846	0
12Gingietl	110	30%	0%	0%	0%	0%	1.6	0.0	0.0	0.0	0.0	1728	0
13Gish	110	30%	0%	0%	0%	0%	1.6	0.0	0.0	0.0	0.0	8125	0
14Chemainuk	110	20%	27%	0%	0%	0%	2.0	3.0	0.0	0.0	0.0	39851	28969
15Burton	110	18%	24%	31%	0%	0%	1.5	2.4	3.4	0.0	0.0	959	959
16Monkley	110	23%	29%	0%	0%	0%	1.7	2.6	0.0	0.0	0.0	17485	13114
17Chambers	110	18%	25%	0%	0%	0%	2.3	3.4	0.0	0.0	0.0	29486	20107
18Welda	110	23%	0%	0%	0%	0%	2.5	0.0	0.0	0.0	0.0	20203	0
19Quilgauw	110	26%	32%	0%	0%	0%	1.3	2.2	0.0	0.0	0.0	19385	15307
20Ishkheenickhh	110	13%	18%	25%	31%	35%	0.8	1.4	2.2	3.3	4.5	251107	233979
21Ginlulak	110	25%	31%	0%	0%	0%	1.4	2.3	0.0	0.0	0.0	12796	8202
22Kwiniak (Ksedin)	110	16%	23%	29%	0%	0%	1.7	2.6	3.7	0.0	0.0	120170	97380
23Ksemamaith	110	23%	29%	0%	0%	0%	1.7	2.6	0.0	0.0	0.0	11356	7883
24Ansedegan	110	27%					33%					0%	0%
25Kwinyarh	110	30%	0%	0%	0%	0%	1.6	0.0	0.0	0.0	0.0	2444	0
26Zolzap	110	27%	32%	35%	0%	0%	0.7	1.3	2.1	0.0	0.0	13930	11734
Total												792049	654940

Appendix F. Theoretical useable width and useable area for Nass watersheds.

1.2

0%

Appendix F (cont).													
Watershe		Low Flow Stage	Tł	neor. %	b Us. W	/idth (n	ו)	Theo	retical l	Jseab	le Width	n (m)	Theoretical Useable Area (m ²)	Theoretical Useable Area (m ²)
		%MAD	Main Order	Main Ord-1	Main Ord-2		Main Ord-4	3 rd ord	4 th ord	5 th Ord	^{6th} Ord	7 th Ord	>3 rd order	>4 th order
Sympatric Po	opulations													
27Tseax		110	13%	18%	25%	31%	0%	1.4	2.3	3.3	4.6	0.0	65884	55934
28Seaskinn 29Gitwinksi	-	110 110	19% 33%	26% 0%	32% 0%	0% 0%	0% 0%	1.3 1.2	2.2 0.0	3.2 0.0	0.0	0.0	27678 1238	27678 0
Total													94800	83612
Summer Pop	oulations													
30Shumal		110	23%	29%	0%	0%	0%	1.7	2.6	0.0	0.0	0.0	42303	41629
31Kwinamu		110	25%	31%	0%	0%	0%	1.4	2.3	0.0	0.0	0.0	0	0
32Kwinatah		110	17%	24%	30%	34%	0%	0.9	1.6	2.5	3.5	0.0	30401	30401
33Kshadin		110	22%	29%	34%	0%	0%	1.0	1.7	2.6	0.0	0.0	185	185
34Tchitin		110	18%	25%	31%	35%	0%	0.8	1.4	2.3	3.3	0.0	58459	56861
35Kinskuch		110	15%	21%	28%	0%	0%	1.8	2.8	3.9	0.0	0.0	5949	5912
36Paw		110	20%	27%	32%	35%	0%	0.7	1.2	2.1	3.1	0.0	93686	79378
37Brown Be		110	18%	25%	0%	0%	0%	2.2	3.3	0.0	0.0	0.0	982	982
38Van Dyke	e CK	110	28%	33%	0%	0%	0%	1.1	1.8	0.0	0.0	0.0	740	740
39White 40Meziadin		110 110	12% 13%	18% 19%	25% 26%	31% 32%	0% 0%	1.4 1.3	2.3 2.1	3.4 3.1	4.6	0.0	200702 35325	200702 35325
	Main	110	12%	19%	25%	32% 31%	34%	0.8	2.1 1.5	2.3	4.4	4.7	272804	272804
41Cranberry		110	12%	18%	25%	31%	35%	0.8	1.5	2.3	3.4	4.7	2172004	212804
Bell-Irving		110	1370	10 /0	23/0	51/0	5570	0.0	1.4	۷.۵	5.5	4.0	217900	211900
43Bowser		110	8%	11%	16%	23%	30%	1.6	2.6	3.7	5.0	6.7	239516	239516
Bell-Irvino 44Teigen)	g (Bowser to	110	8%	12%	17%	24%	30%	1.6	2.5	3.6	4.9	6.6	464332	464332
Bell-Irving 45Teigen)	g (above	110	11%	17%	23%	30%	34%	0.9	1.6	2.5	3.6	5.0	254965	254965

Appendix F (cont).													
Watershed	Low Flow Stage	Tł	Theor. % Us. Width (m)					retical l		e Width	. ,	Theoretical Useable Area (m ²)	Theoretical Useable Area (m ²)
	%MAD	Main Order	Main Ord-1	Main Ord-2	Main Ord-3	Main Ord-4	3 rd ord	4 th ord	5 th Ord	^{6th} Ord	7 th Ord	>3 rd order	>4 th order
46Bowser	110	11%	17%	23%	30%	34%	0.9	1.6	2.5	3.6	5.0	136404	136404
47Taft	110	15%	21%	28%	33%	0%	1.1	1.8	2.8	3.9	0.0	93940	93940
48Treaty	110	16%	22%	29%	33%	0%	1.0	1.8	2.7	3.8	0.0	103184	103184
49Teigen	110	16%	23%	30%	34%	0%	0.9	1.6	2.6	3.7	0.0	139203	139203
50Hodder	110	24%	31%	34%	0%	0%	0.8	1.5	2.4	0.0	0.0	40860	40860
51 Kwinageese	110	15%	21%	28%	33%	0%	1.2	1.9	2.9	4.1	0.0	127795	127795
52Saladamis	110	24%	31%	34%	0%	0%	0.8	1.5	2.4	0.0	0.0	27420	27420
53Sanyam	110	23%	29%	34%	0%	0%	1.0	1.7	2.6	0.0	0.0	879	879
54Sanskisoot	110	23%	29%	34%	0%	0%	1.0	1.7	2.6	0.0	0.0	30262	30262
55Taylor	110	13%	19%	26%	32%	35%	0.7	1.3	2.2	3.2	4.4	225666	225666
56Sallysout	110	17%	23%	30%	34%	0%	0.9	1.6	2.5	3.6	0.0	6024	6024
57Vile	110	19%	26%	32%	0%	0%	1.3	2.1	3.1	0.0	0.0	60991	60991
58Kotsinka	110	17%	24%	30%	0%	0%	1.6	2.5	3.5	0.0	0.0	37265	37265
59Damdochax	110	13%	19%	26%	32%	35%	0.7	1.3	2.1	3.1	4.4	168110	168110
60Muskaboo	110	14%	20%	27%	32%	0%	1.2	2.0	3.0	4.2	0.0	235092	235092
61 Panorama	110	23%	30%	34%	0%	0%	0.9	1.6	2.5	0.0	0.0	40742	40742
62Konigus	110	15%	22%	28%	33%	0%	1.1	1.8	2.8	3.9	0.0	2712	2712
63Upper Nass	110	13%	19%	26%	32%	0%	1.3	2.1	3.1	4.4	0.0	260604	260604
Total												3655407	3638790

APPENDIX G

TABLE OF PRODUCTIVITY ADJUSTMENT FACTORS FOR MODELS 5 AND 6 USING METHODS OF TAUTZ ET AL (1992)

Watershed	Area (km ²)	Stream Order	Water Yield (m ³ /s/km ²)	Specific Conductance	Alkalinity (mg/l)	Alkalinity (mg/l)	Alkalinity (mg/l)	Alkalinity (mg/l)
Valeisneu		Order		Conductance	(ing/i)	(iiig/i)	(iiig/i)	(119/1)
Winter Populations								
1 Kincolith	225.9	4	0.048	20	39.8	21.0	6.1	39.8
2lknouk	112.4	4	0.063	20	28	18.1	6.1	28.0
3Keazoah	11.5	3	0.063	20	38	18.1	6.1	38.0
4Anliyen (Greenville)	40.7	4	0.063		13	18.1		13.0
5Diskangieq	36.4	4	0.063		24	18.1		24.0
6Anudol	123.7	5	0.063			18.1		18.1
7Inieth	9.5	3	0.063			18.1		18.1
8 <mark>Cugiladap</mark>	6.2	3	0.063			18.1		18.1
9Wegiladap	17.0	4	0.063			18.1		18.1
10Wilyayaanooth	12.7	3	0.063			18.1		18.1
11Giswatz	13.3	3	0.063			18.1		18.1
12Gingietl	14.7	3	0.063			18.1		18.1
13Gish	14.7	3	0.063	130		18.1	52.4	60.8
14Chemainuk	58.1	4	0.119	100		12.8	39.8	47.0
15 <mark>Burton</mark>	96.0	5	0.119	23	25	12.8	7.4	25.0
16Monkley	35.7	4	0.119	32	35	12.8	11.2	35.0
17Chambers	89.9	4	0.119		20	12.8		20.0
18Welda	31.3	3	0.119		22	12.8		22.0
19Quilgauw	37.0	4	0.063			18.1		18.1
20 Ishkheenickhh	579.4	7	0.063			18.1		18.1
21Ginlulak	43.3	4	0.063		31	18.1		31.0
22Kwiniak (Ksedin)	248.1	5	0.063	60	30	18.1	22.8	30.0
23Ksemamaith	68.4	4	0.063	100	38	18.1	39.8	38.0
24Ansedegan	28.5	4	0.063	120	38	18.1	48.2	38.0
25Kwinyarh	15.6	3	0.063	80	21	18.1	31.4	21.0
26Zolzap	32.0	5	0.063		27	18.1		27.0

Appendix G. Table of adjustment factors to account for productivity differences between Keogh River and Nass tribuitaries (as per Tautz et al. 1992).

Appendix G (cont).								
Watershed	Area (km ²)	Stream Order	Water Yield (m ³ /s/km ²)	Specific Conductance	Alkalinity (mg/l)	Alkalinity (mg/l)	Alkalinity (mg/l)	Alkalinity (mg/l)
Sympatric Populations								
27Tseax	608.3	6	0.063	68	34.0	18.1	26.3	34.0
28Seaskinnish	204.6	5	0.063	88	104.0	18.1	34.7	104.0
29Gitwinksihlkw Ck	7.0	3	0.063	00	104.0	18.1	54.7	18.1
Summer Populations								
30Shumal	99.6	4	0.063			18.1		18.1
31Kwinamuck	61.5	4	0.063			18.1		18.1
32Kwinatahl	306.1	6	0.063	73	24.3	18.1	28.4	24.3
33Kshadin	105.1	5	0.063			18.1		18.1
34Tchitin	248.2	6	0.068		46.7	17.4		46.7
35Kinskuch	476.9	5	0.068			17.4		17.4
36Paw	176.7	6	0.068		23.6	17.4		23.6
37Brown Bear	227.7	4	0.068			17.4		17.4
38Van Dyke Ck	34.1	4	0.068			17.4		17.4
39White	954.0	6	0.068	77	32.8	17.4	30.2	32.8
40Meziadin	719.3	6	0.068	68	35.0	17.4	26.3	35.0
41Cranberry Main	974.8	7	0.042	160	83.0	22.5	65.2	83.0
42Cranberry-Kiteen	885.5	7	0.042	149	62.5	22.5	60.3	62.5
Bell-Irving below 43Bowser	4954.0	7	0.068		64.0	17.4		64.0
Bell-Irving (Bowser 44Teigen)	to 4498.0	7	0.068	137	64.0	17.4	55.4	64.0
Bell-Irving (above 45Teigen)	1295.8	7	0.068		64.0	17.4		64.0
46Bowser	1295.0	7	0.068	68	44.0	17.4	26.5	44.0
47Taft	474.0	6	0.068	00	U	17.4	20.5	17.4
48Treaty	427.1	6	0.068		54.0	17.4		54.0
49Teigen	351.7	6	0.068	130	57.0	17.4	52.4	57.0

Appendix G (cont).								
	2	Stream	Water Yield		Alkalinity	Alkalinity	Alkalinity	Alkalinity
Watershed	Area (km ²)	Order	(m ³ /s/km ²)	Conductance	(mg/l)	(mg/l)	(mg/l)	(mg/l)
50Hodder	72.3	5	0.068		62.0	17.4		62.0
51Kwinageese	552.3	6	0.068	39	23.1	17.4	14.2	23.1
52Saladamis	75.0	5	0.068		_	17.4		17.4
53Sanyam	96.6	5	0.068			17.4		17.4
54Sanskisoot	103.3	5	0.068			17.4		17.4
55Taylor	753.2	7	0.068		33.3	17.4		33.3
56Sallysout	333.2	6	0.068			17.4		17.4
57Vile	188.0	5	0.068			17.4		17.4
58Kotsinka	312.4	5	0.068			17.4		17.4
59Damdochax	737.4	7	0.068		43.3	17.4		43.3
60Muskaboo	614.9	6	0.068		42.8	17.4		42.8
61 Panorama	90.6	5	0.068		54.4	17.4		54.4
62Konigus	471.7	6	0.068		53.0	17.4		53.0
63Upper Nass	735.6	6	0.068		51.7	17.4		51.7
Total								

¹ Specific conductance as measured in the field ² Alkalinity as measured in the field (sources are WLAP and Nisga'a Fisheries)

³ Alkalinity as predicted from water yield, equation 8
⁴ Alkalinity as predicted from conductivity, equation 7
⁵ Alkalinity value used to predict standing crop of late summer fry, actual data used when available

APPENDIX H

SMOLT PRODUCTIVITY ESTIMATES USING SIX DIFFERENT MODELS FOR NASS RIVER STEELHEAD

Appendix H. Comparison of 6 different model predictions of maximum smolt production for Nass River tributaries. (Model uses stream orders of 4 or larger depending on tributary).

uepen	ding on trit	Julary).					-	
Watershed	Model 1 (Keogh length)	Model 2 (Keogh area)	Model 3 (Cranberry length)	Model 4 (Cranberry area)	Model 5 (Keogh length / Adjust)	Model 6 (Keogh area / Adjust)	Mean of Six Estimates	SE of Six Estimates
Winter Populations								
1Kincolith	8343	5448	5562	3100	9926	6482	6477	2395
2lknouk	7311	4267	4874	2428	7660	4471	5168	1985
3Keazoah	0	0	0	0	0	0	0	0
4Anliyen (Greenville)	744	323	496	184	531	231	418	212
5Diskangieq	2688	1126	1792	641	2607	1092	1658	851
6Anudol	1923	1152	1282	655	1621	971	1267	454
7Inieth	0	0	0	0	0	0	0	0
8Cugiladap	0	0	0	0	0	0	0	0
9Wegiladap	357	115	238	65	301	97	195	120
10Wilyayaanooth	0	0	0	0	0	0	0	0
11Giswatz	0	0	0	0	0	0	0	0
12Gingietl	0	0	0	0	0	0	0	0
13Gish	0	0	0	0	0	0	0	0
14Chemainuk	2895	1680	1930	956	3616	2098	2196	937
15Burton	84	56	56	32	83	55	61	20
16Monkley	1503	761	1002	433	1761	891	1058	490
17Chambers	1791	1166	1194	664	1795	1169	1296	433
18Welda	0	0	0	0	0	0	0	0
19Quilgauw	2109	888	1406	505	1777	748	1239	629
20Ishkheenickhh	25335	13571	16890	7721	22374	11985	16313	6611
21Ginlulak	1077	476	718	271	1187	524	709	359
22Kwiniak (Ksedin)	9651	5648	6434	3214	10008	5857	6802	2594
23Ksemamaith	900	457	600	260	1098	558	646	305
24Ansedegan	447	173	298	98	546	211	295	171
25Kwinyarh	0	0	0	0	0	0	0	0
26Zolzap	1935	681	1290	387	1991	700	1164	685
Total (all systems)	69093	37987	46062	21613	68880	38139	46962	19249
Total (confirmed)	55266	31238	36844	17774	54851	31221	37866	15007
Sympatric Populations								
27Tseax	5031	3244	3354	1846	5183	3342	3667	1254
28 Seaskinnish	2613	1605	1742	913	4708	2892	2412	
29Gitwinksihlkw Ck	0	0	0	0	<u>4708</u> 0	2692	0	1333 0
	0	0	0	0	0	0	0	0
Total (all systems)	7644	4849	5096	2759	9891	6235	6079	2587
Total (confirmed)	7644	4849	5096	2759	9891	6235	6079	2587

Appendix H (cont).								
Watershed	Model 1 (Keogh length)	Model 2 (Keogh area)	Model 3 (Cranberry length)	Model 4 (Cranberry area)	Model 5 (Keogh length / Adjust)	Model 6 (Keogh area / Adjust)	Mean of Six Estimates	SE of Six Estimates
Summer Populations								
30Shumal	4788	2414	3192	1374	3937	1985	2948	1274
31Kwinamuck	0	0	0	0	0	0	0	0
32Kwinatahl	2583	1763	1722	1003	2460	1679	1868	579
33Kshadin	21	11	14	6	17	9	13	6
34Tchitin	5097	3298	3398	1876	5998	3881	3925	1452
35Kinskuch	450	343	300	195	363	276	321	86
36Paw	12927	4604	8618	2619	12131	4320	7537	4346
37Brown Bear	90	57	60	32	73	46	60	20
38Van Dyke Ck	120	43	80	24	97	35	66	38
39White	15456	11641	10304	6623	17099	12878	12334	3741
40Meziadin	2436	2049	1624	1166	2761	2323	2060	582
41Cranberry Main	23760	15823	15840	9003	39719	26450	21766	10785
42Cranberry-Kiteen	14796	12638	9864	7191	21546	18404	14073	5334
Bell-Irving below 43Bowser	10704	13892	7136	7904	13659	17727	11837	4027
Bell-Irving (Bowser 44to Teigen)	21942	26931	14628	15323	27999	34365	23531	7721
Bell-Irving (above 45Teigen)	18228	14788	12152	8414	23259	18870	15952	5286
46Bowser	11070	7911	7380	4501	10177	7273	8052	2337
47Taft	7161	5449	4774	3100	4765	3626	4812	1433
48Treaty	8907	5985	5938	3405	10440	7015	6948	2471
49Teigen	13806	8074	9204	4594	15061	8808	9924	3874
50Hodder	5172	2370	3448	1348	6496	2976	3635	1889
51Kwinageese	16800	7412	11200	4217	15801	6971	10400	5093
52Saladamis	3432	1590	2288	905	2766	1282	2044	958
53Sanyam	102	51	68	29	82	41	62	27
54Sanskisoot	3444	1755	2296	999	2776	1415	2114	906
55Taylor	22710	13089	15140	7447	25315	14590	16382	6562
56Sallysout	501	349	334	199	404	282	345	103
57Vile	5880	3538	3920	2013	4739	2851	3823	1370
58Kotsinka	3150	2161	2100	1230	2539	1742	2154	658
59Damdochax	17172	9750	11448	5548	21149	12009	12846	5535
60Muskaboo	18159	13635	12106	7758	22949	17232	15306	5296
61Panorama	4818	2363	3212	1344	6865	3367	3661	1946
62Konigus	207	157	138	90	291	221	184	71
63Upper Nass	20883	15115	13922	8600	29006	20994	18087	7095
Total (all systems)	296772	211050	197848	120080	352737	255942	239072	92902
Total (confirmed)	198474	151885	132316	86417	248272	192014	168230	65020

APPENDIX I

ESTIMATE OF THE REQUIRED NUMBER OF STEELHEAD SPAWNERS TO FULLY SEED AVAILABLE FRY HABITAT

200		l y habita							
Watershed	Area (km²)	Stream Order	Steelhead/ Rainbow present (confirmed) ⁵	Smolts Produced	Fry Produced	Required Eggs	Female Length		Required Spawners
Winter Populations									
1Kincolith	225.9	4	Y	6482	84547	845470	743	5752	294
2lknouk	112.4	4	Y	4471	53502	535015	771	6150	174
3Keazoah	11.5	3	Y	0	0	0	771	6150	0
4Anliyen (Greenville)	40.7	4	U	231	2760	27601	771	6150	9
5Diskangieq	36.4	4	U	1092	13073	130732	771	6150	43
6Anudol	123.7	5	N	971	11615	116153	771	6150	38
7Inieth	9.5	3	N	0	0	0	771	6150	0
8Cugiladap	6.2	3	N	0	0	0	771	6150	0
9Wegiladap	17.0	4	N	97	1156	11558	771	6150	4
10Wilyayaanooth	12.7	3	RB	0	0	0	771	6150	0
11Giswatz	13.3	3	N	0	0	0	771	6150	0
12Gingietl	14.7	3	RB	0	0	0	771	6150	0
13Gish	14.7	3	RB	0	0	0	771	6150	0
14Chemainuk	58.1	4	N	2098	25113	251133	771	6150	82
15Burton	96.0	5	RB	55	659	6589	771	6150	2
16Monkley	35.7	4	RB	891	10663	106628	771	6150	35
17Chambers	89.9	4	Y	1169	11442	114418	821	6888	33
18Welda	31.3	3	U	0	0	0	771	6150	0
19Quilgauw	37.0	4	U	748	8954	89539	771	6150	29
20lshkheenickh	579.4	7	Y	11985	132543	1325428	796	6514	407
21Ginlulak	43.3	4	N	524	6276	62764	771	6150	20
22Kwiniak (Ksedin)	248.1	5	Y	5857	75850	758501	771	6150	247
23Ksemamaith	68.4	4	Y	558	6679	66786	771	6150	22
24Ansedegan	28.5	4	U	211	2522	25216	771	6150	8
25Kwinyarh	15.6	3	Y	0	0	0	771	6150	0
26Zolzap	32.0	5	Y	700	8379	83795	771	6150	27
Total (all systems)	2002			38139	455733	4557325			1473
Total (confirmed)	1383			31221	372941	3729414			1204
Difference	619			6918	82791	827912			269
Difference	010			0010	02101	027012			200
Sympatric Populations									
27Tseax	608.3	6	Y	3342	49247	492470	756	5935	166
28Seaskinnish	204.6	5	Y	2892	42621	426210	756	5935	144
29Gitwinksihlkw Ck	7.0	3	N	0	0	0	756	5935	0
		-			-	-			
Total (all systems)	820			6235	91868	918680			310
Total (confirmed)	813			6235	91868	918680			310
Difference	7			0	0	0			0
		1	1	-	-	-		1	

Appendix I. Estimate of the required number of steelhead spawners to fully seed available fry habitat.

Appe	endix I (cont).									
	Watershed	Area (km²)	Stream Order	Steelhead/ Rainbow present (confirmed) ⁵	Smolts Produced	Fry	Required Eggs	Female Length	Female	Required Spawners
-	ner Populations			(0011111100)	1 1000000	1 1000000	-990	Longin	loounary	opamioro
oum										
30	Shumal	99.6	4	U	1985	24802	248018	678	4876	102
	Kwinamuck	61.5	4	N	0	0	0	678	4876	0
	Kwinatahl	306.1	6	U	1679	20978	209777	678	4876	86
	Kshadin	105.1	5	U	9	110	1105	678	4876	0
	Tchitin	248.2	6	Y	3881	60133	601327	678	4876	247
	Kinskuch	476.9	5	Y	276	3453	34528	678	4876	14
	Paw	176.7	6	U	4320	53979	539792	678	4876	221
	Brown Bear	227.7	4	Y	46	573	5734	678	4876	2
	Van Dyke Ck	34.1	4	U	35	432	4323	678	4876	2
39	White	954.0	6	N	12878	160901	1609014	678	4876	660
40	Meziadin	719.3	6	Y	2323	29438	294378	712	5326	111
41	Cranberry Main	974.8	7	Y	26450	362770	3627704	699	5152	1408
42	Cranberry-Kiteen	885.5	7	Y	18404	250618	2506176	699	5152	973
	Bell-Irving below Bowser	4954.0	7	Y	17727	321616	3216159	683	4941	1302
	Bell-Irving (Bowser to Teigen)	4498.0	7	Y	34365	623493	6234925	683	4941	2524
	Bell-Irving (above Teigen)	1295.8	7	Y	18870	342360	3423603	683	4941	1386
	Bowser	1262.0	7	Y	7273	182246	1822462	683	4941	738
	Taft	474.0	6	Y	3626	65785	657852	683	4941	266
48	Treaty	427.1	6	Y	7015	127269	1272693	683	4941	515
	Teigen	351.7	6	Y	8808	199596	1995959	683	4941	808
50	Hodder	72.3	5	Y	2976	54002	540018	683	4941	219
51	Kwinageese	552.3	6	Y	6971	85247	852471	717	5394	316
52	Saladamis	75.0	5	U	1282	16014	160141	678	4876	66
	Sanyam	96.6	5	U	41	513	5133	678	4876	2
54	Sanskisoot	103.3	5	U	1415	17674	176739	678	4876	72
55	Taylor	753.2	7	N	14590	182289	1822888	678	4876	748
56	Sallysout	333.2	6	U	282	3518	35181	678	4876	14
57	Vile	188.0	5	U	2851	35621	356209	678	4876	146
58	Kotsinka	312.4	5	U	1742	21764	217640	678	4876	89
59	Damdochax	737.4	7	Y	12009	158900	1589001	743	5752	552
	Muskaboo	614.9	6	N	17232	215294	2152940	678	4876	883
	Panorama	90.6	5	N	3367	42064	420641	678	4876	173
	Konigus	471.7	6	N	221	2764	27640	678	4876	11
63	Upper Nass	735.6	6	Y	20994	262300	2622999	704	5219	1005
	Total (all systems)	23669			255942		39285170			15662
	Total (confirmed)	19598			192014		31297989			12386
	Difference	4070			63928	798718	7987181			3276

¹Number of smolts at maximum production for specified model

²Number of fry required to fully seed habitat and produce maximum smolts, equation 14

³Number of eggs required to fully seed habitat given specified egg to fry survival

⁴Female length from either tributary specific data or average

⁵Female fecundity predicted from female length, equation 15

 ⁶Required number of spawners calculated using equation 16
⁷ST Confirmed: Tchitin, Kinskuch, Brown Bear, Meziadin, Cranberry-Main, Cranberry-Kiteen, Bell-Irving below Bowser, Bell-Irving (bowser-Teigen), Bell-Irving (above Teigen), Bowser, Taft, Treaty, Teigen, Hodder, Kwinageese, Damdochax, upper Nass