Mineralization of terbuthylazine

Anders Nielsen

July 31, 2012

1 The problem

Terbuthylazine is a herbicide used in agriculture. It is a so-called s-triazin like atrazine, which has
been banned in Denmark after suspicion of causing cancer. Terbuthylazine can be bound to the
soil, but free terbuthylazine can be washed into the drinking water. Some bacteria can mineralize
it. This data is part of a larger experiment to determine the ability of certain bacteria to mineralize
terbuthylazine, and to estimate the mineralization rate.

1.1 System

The experiment starts out with all the terbuthylazine being free Fy = 100%, By = 0%, and
My = 0%. Over the time of the experiment the terbuthylazine will gradually be bound to the soil
(B), gradually be mineralized (M), and some of what is bound to the soil is released to be free
(B). The system will be described via a system of ordinary differential equations:

dBy

a —k1 By + ko Fy, Bo =0
dF;
7dtt = k1B — (k2 + k3) Iy, Fp =100
M,
—— = k3F] My=20
dt 34t 0

© 0 N O U W N =

NN NN NN NN NN R e e e e
© 0 N G AR WNRO®© KON O W= O

The system is closed, so the amount mineralized at any given time is
M, =100 — B, — F,,
so the system can be simplified by defining X; = (By, F;)'. The simplified system is:
dX, —kq ko 0
dt < ki —(ka+ks)) " 0 100

A

This system is a linear ODE system, so it can be solved. Here we will express the solution via the
matrix exponential function.

X, = e X,

The amount mineralized is measured 26 times throughout a year.

A simple statistical model for these observations assumes independent normal measurement noise.
M;, ~ N (100 — ©X;,,02), independent, and with X;, = e Xj.

2 Implementation in AD Model Builder

2.1 Data

The data file prepared for reading into AD Model Builder is

noObs
26
time terb
77 1.396
.69 3.784
.69 5.948
.67 7.717
.69 9.077
71 10.100
.94 11.263
.67 11.856
11.77 12.251
17.77 12.699
23.77 12.869
32.77 13.048
40.73 13.222
47.75 13.347
54.90 13.507
62.81 13.628
72.88 13.804
98.77 14.087
125.92 14.185
160.19 14.351
191.15 14.458
223.78 14.756
287.70 15.262
340.01 15.703
340.95 15.703
342.01 15.703

N O W N O

©

Table 1: Percentages mineralized at different times.

Time Mineralized

0.77 1.396
1.69 3.784
2.69 5.948
3.67 7.717
4.69 9.077
5.71 10.100
7.94 11.263
9.67 11.856
11.77 12.251
17.77 12.699
23.77 12.869
32.77 13.048
40.73 13.222
47.75 13.347
54.90 13.507
62.81 13.628
72.88 13.804
98.77 14.087
125.92 14.185
160.19 14.351
191.15 14.458
223.78 14.756
287.70 15.262
340.01 15.703
340.95 15.703
342.01 15.703

© 0N O U W N =

NN NN RN R R R e e e e e
A ® N R O © KNGk WN RO

25
26
27
28
29
30
31
32
33
34

2.2 AD Model Builder Code

The implementation follows the typical AD Model Builder template; first data is read in, then
model parameters are declared, and finally the negative log likelihood is coded.

DATA_SECTION
init_int noObs
init_matrix obs(1,no0Obs,1,2)
vector X0(1,2)

PARAMETER_SECTION
init_vector logK(1,3);
init_number logSigma;

sdreport_vector k(1,3);
sdreport_number sigma2;
sdreport_vector M(1,no0bs);

matrix X(1,no0bs,1,2);
matrix A(1,2,1,2);
objective_function_value nll;

PRELIMINARY_CALCS_SECTION
X0(1)=0.0; X0(2)=100.0;
logK=-2.0;
logSigma=-2.0;

PROCEDURE_SECTION
k=exp (logkK) ;
sigma2=exp(2.0*logSigma) ;

A(L,D= -k(1); A(1,2)= k(2);
A(2,1)= k(1); A(2,2)= -k(2)-k(3);

for(int i=1; i<=nolObs; ++i){
X(i)=expm(A*obs(i,1))*X0;
M(i)=100.0-sum(X(i));
nll+=0.5*(log(2.0*M_PI*sigma2)+square((obs(i,2)-M(i)))/sigma?2);
}

2.3 Running

The model can be run from the command line by compiling and then executing the produced binary,
but this can also be accomplished from within the R console like this:

> system('admb min')
> system.time(system('./min'))

as long as we ensure that the R working directory is set to the directory containing the AD Model

Builder code for the problem min.tpl and the corresponding data file min.dat. The time to
optimize the likelihood and calculate the Hessian was 0.613 seconds.

2.4 Results

After running the model we can plot the fit to make sure all went well.

16 —

14

10

M (%)

T T T T T T T T
0 50 100 150 200 250 300 350

Time (days)

Estimates and standard deviations of model parameters and derived quantities are located in the
filemin.std. From the figure it is evident that a more suitable model for this data set would include
serial correlation, but for the purpose of comparing the three statistical tools with a simple we will
ignore this for now.

3 Implementation in R

Using R Under development (unstable) (2012-07-27 r60013) and package versions:

Matrix optimx R2jags
1.0-6 2012.5.24 0.03-07

3.1 Data

The same data file is used as for the AD Model Builder implementation, which is read in ignoring
the first three lines in the file with the command:

> dat<-read.table('min.dat', skip=3, header=FALSE)

3.2 R code

The first attempt used the ”optim” function in R with its default settings. The optimization was
initialized by the same values as the AD Model Builder program, and parametrized in exactly the
same way.

> dat<-read.table("../DATA/min.dat", skip=3, header=FALSE)
> library(Matrix)

> nlogL<-function(theta){

+ k<-exp(theta[1:3])

+ sigma<-exp (thetal[4])

+ A<-rbind(

+ c(-k[1], k[2]),

+ c(k[1], -(k[2]+k([3]))
+)

+ x0<-¢(0,100)

+ sol<-function(t)100-sum(expm (A*t) }*%x0)

+ pred <- sapply(dat[,1],sol)

+ -sum (dnorm(dat [, 2] ,mean=pred, sd=sigma, log=TRUE))

+ }

> (s1 <- system.time(fit<-optim(c(-2,-2,-2,-2),nlogL,hessian=TRUE)))
> fit$value

> fit$convergence

The default use of optim used 18 seconds, and reported successful completion. This is however not
the correct solution. The AD Model Builder program reported a minimum negative log likelihood
of 0.939, but R reported a minimum of 19.269. Of the built-in optimizers in optim only "L-BFGS-B”
managed to find the correct solution.

> system.time(fit<-optim(c(-2,-2,-2,-2),nlogL,hessian=TRUE, method='L-BFGS-B'))
> fit$value

> fit$convergence

The recent add-on package to R called "optimx” allows the user to try out many different build-in
optimizers for a given objective function, and compare their solutions, and running time.

> library(optimx)

> fit <- optimx(c(-2,-2,-2,-2),nlogL,hessian=TRUE, control=1ist (all.methods=TRUE))

method par fvalues fns grs hes
13 bobyqa 8.314150, -11.028827, 4.638480, 4.477432 153.3056 157 O O
9 Rcgmin -19.185319, 17.416518, -44.176230, 2.533604 102.7661 85 50 O

5 nlm -24.57290, 23.50660, -57.43591, 2.53360 102.766 182 0 0
10 Rvmmin -27.551412, 26.872030, -64.750702, 2.533601 102.766 73 14 O
2 BFGS -27.551412, 26.888313, -64.750702, 2.533601 102.766 89 16 0
CG -14.052437, 11.626626, -31.598186, 2.533602 102.766 616 100 0
1 NM -7.2485767, -1.4200733, -3.3243726, -0.3518798 19.26905 225 0 0
15 nmkb -7.249600, -1.582477, -3.476082, -1.382858 0.9392151 357 0 0
6 nlminb -7.249619, -1.582472, -3.476072, -1.382815 0.9392142 43 30 0
8 ucminf -7.249616, -1.582472, -3.476072, -1.382814 0.9392142 65 57 0
4 LBFGSB -7.249617, -1.582471, -3.476071, -1.382819 0.9392142 83 75 0
7 spg -7.249619, -1.582466, -3.476066, -1.382815 0.9392142 267 182 0
14 hjkb -7.249611, -1.582466, -3.476067, -1.382816 0.9392142 1222 0 0
12 newuoa -7.249611, -1.582464, -3.476065, -1.382815 0.9392142 1906 0 0
11 uobyqa -7.249611, -1.582464, -3.476065, -1.382815 0.9392142 479 0 0
rs conv KKT1 KKT2 mtilt xtimes meths
13 0 0 TRUE FALSE 0.007277456 10.457 bobyqa
9 0 3 TRUE FALSE NA 21.873 Rcgmin
5 0 3 TRUE FALSE NA 11.569 nlm
10 0 3 TRUE FALSE NA 9.724 Rvmmin
2 0 0 TRUE FALSE 0.002090308 10.829 BFGS
3 0 1 TRUE FALSE 0.001548984 73.568 CG
1 0 3 FALSE FALSE NA 15.325 NM
15 0 0 FALSE TRUE 9.817502 23.013 nmkb
6 0 0O TRUE TRUE 0.9040154 11.849 nlminb
8 0 0 FALSE TRUE 1.150713 21.505 ucminf
4 0 0 FALSE TRUE 1.024187 30.826 LBFGSB
7 0 0 FALSE TRUE 0.6465689 78.049 spg
14 0 0 FALSE TRUE 0.9004727 82.205 hjkb
12 0 0 FALSE TRUE 0.704133 125.48 newuoa
11 0 0 FALSE TRUE 0.7107458 31.094 uobyqa

From this table we see that for this particular model the fastest optimizer in R which actually found
the correct minimum was nlminb and the time was ca. 12 seconds. Of the 15 built-in optimizers, 8
did find the correct solution. Based on the new convergence criteria (the columns KKT1 and KKT2
where both should be TRUE), only the nlminb model fit is unproblematic.

4 TImplementation in BUGS (jags)

4.1 Data

The same data file is used as for the AD Model Builder implementation.

4.2 BUGS code

The implementation in BUGS comes in two parts; (1) the BUGS model description (in a separate
file), and (2) an R script reading in data and calling the model with data and specifying the starting

© 00 N O U e W N =

e e e e e
W N 3 Uk W N = O

points for the chains and desired number of iterations. First the model description file:

model {

A[1,1] <- -exp(logK1l)
A[1,2] <- exp(logK2)
A[2,1] <- exp(logKl)
A[2,2] <- -exp(logK2)-exp(logK3)

tau <- 1/(sigmaxsigma)

x0[1] <- 0

x0[2] <- 100

for (i in 1:noObs){
M[i] ~ dnorm (pred[il], tau)
pred[i] <- 100-sum(mexp(A*time[i])%*%x0)

}

sigma ~ dunif (0, 1000)

logKl ~ dunif(-10,10)

logK2 ~ dunif(-10,10)

logK3 ~ dunif(-10,10)

The next section will show the second part.

4.3 Running

The R commands for reading in data and parsing it to the BUGS model.

v Vv

+ + + VVVVVVVYV

+ + + Vv

library(R2jags)
load.module('msm') # the module containing the matrix exponential

dat <- read.table('../DATA/min.dat', skip=3, header=FALSE)
time <- dat[,1]
M <- dat[,2]
noObs <- length(time)
set.seed(12345)
jags.data <- list("noObs","time","M")
jags.params <- c("logK1l","logK2","logK3","sigma")
jags.inits <- function(){
list("logK1"=-2+.2*%rnorm(1),"logK2"=-2+.2*rnorm(1), "logK3"=-2+.2%rnorm(1),
"sigma'"=exp(-2+.2*rnorm(1)), .RNG.name="base::Wichmann-Hill", .RNG.seed=round (runif(:

time<-unname (system. time (
jagsfit <- jags(data=jags.data, inits=jags.inits, jags.params,
n.iter=10000, n.thin=1,n.burnin=0,model.file="model.txt")
)["elapsed"])

Running the 3 chains with 10000 iterations in each took approximately 51 seconds.

4.4 Results

log(o)

AN

log(ks)

A\

log(k2)

A\

log(ky)

o -

o -

o -

-14 -10 -06

-3.45 -3.30 -1.8

-3.60

-15

-1.7

-7.6 -7.2

-8.0

-1.58(0.032) -3.48(0.027) -1.27(0.155)

~7.26(0.083)

0oov

000¢

-0.6

-1.4 -10

-1.8

-3.50 -3.40 -3.30

-3.60

-1.4

-15

-1.6

-1.7

-7.0

-7.4

7.8

