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Fitting N-mixture models with random observer 

effects in BUGS and ADMB 
 
Richard Chandler, Marc Kéry & Hans Skaug, 20 October 2012 

 
1. Introduction 

 
Abundance is the central state variable in much of ecology and its 

applications, such as wildlife management and conservation biology. 
Typically, abundance must be estimated owing to imperfect detection of 

the animals in the wild: some individuals will be overlooked and thus, 
counts of animals are rarely equal to true abundance. Instead, abundance 

and counts are linked by detection probability, which in this context is the 
probability that an individual present appears in a count. A vast array of 

sampling designs and models have been developed over the last 50 years 
to estimate abundance, e.g. Buckland et al. (2001), Borchers et al. 

(2002), Williams et al. (2002) and Royle and Dorazio (2008). Most 

protocols to estimate abundance require that individuals can be 
individually identified, a condition which often requires capturing and 

marking of animals. This is costly and therefore the N-mixture, or binomial 
mixture, model of Royle (2004) is an appealing alternative: this model 

yields estimates of abundance from spatially and temporally replicated 
counts of unmarked animals alone. Typical applications of the Nmix model 

require the assumption of some effects as random, for instance, to 
account for intrinsic differences in the ability of field ornithologists to 

detect and identify birds.  
 

In section 2, this report provides a brief description of the Nmix model and 
in section 3 R code is shown to simulate data with a fixed covariate effect 

and a random observer effect on detection probability. In section 4, the 
Nmix model is fitted to one simulated data set using WinBUGS (or JAGS) 

called from R and in section 5, the same is done for AD Model Builder with 

its random effects module, referred to here ADMB-RE. Section 6 compares 
the results from the two programs and Section 7 briefly discusses the 

main challenges encountered when translating BUGS code to ADMB. 
 

2. Model description 
 

We assume our data yit are the number y of individuals counted at site i (i 
= 1…R) at time t (t = 1…T). We make the assumption that the total period 

over which the T replicated counts are made is sufficiently short that the 
population size Ni at each site may be assumed unchanged. The 

relationship between the observed counts yit and the underlying 
abundances at each site i, Ni, may be described by just two equations. 

The first equation, the state equation, describes the latent abundance Ni 
at site i and the second, the observation equation, describes the observed 

counts yit as a function of that latent abundance: 
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1. State equation:   ~ ( )iiN Poisson   

2. Observation equation:  | ~ ( , )i i itity N Binomial N p  

In the state equation, i  is the expected abundance at site i and the 

Poisson distribution is the standard description of the spatial variation of 

abundance. Possible alternatives for a Poisson include the negative 
binomial (Royle 2004), Poisson-lognormal (Royle and Dorazio 2008) or a 

zero-inflated Poisson distribution (Wenger and Freeman 2008; Kéry and 

Schaub 2011). The expected abundance i  is indexed i, allowing it to vary 

by site. Thus, unstructured heterogeneity among sites could be modelled 
by incorporating random site effects, resulting in a Poisson-lognormal 

distribution in the state equation. Alternatively, the effects of recognized 
and measured covariates that vary among sites (‘site covariates’) could be 

modeled linearly in a GLM fashion via a log link function. 
 

In the observation equation, we assume a Binomial distribution with trial 
size Ni and success probability pit to describe the variability of the 

observed counts yit. The parameter pit represents the detection 
probability. The choice of a Binomial observation process implies the 

assumption that there are no false-positive errors, i.e. no double counts or 
other species counted erroneously as the target species. Since pit is 

indexed by both site i and survey t, we can let it vary by site or survey or 
by a combination of site and survey by modeling unstructured 

heterogeneity via random site, survey or site-by-survey effects. Similarly, 

effects of site covariates or of covariates varying by site and survey 
(‘survey covariates’) can be modeled in a linear GLM fashion via a logit 

link. Of course, in some cases we may simply assume that either or both 

parameters of the mixture model are constant, i.e. i    and it pp  . 

In this report, we adopt a state equation with constant   and an 

observation equation with a fixed effect p1 of a site covariate x and an 
observer random effect uk. 

~ ( )iN Poisson   

| ~ ( , )i i itity N Binomial N p  

0 1 ( )logit( ) * i k ititp p p x u   , with ~ (0, )ku Normal   

uk(it) is the effect of observer k surveying site i at time t. We assume that 
uk is a draw from a zero-mean normal distribution with standard deviation 
 . The parameters to be estimated are: log( ) , p0, p1, log( )  and the 

random observer effects uk.  
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3. Simulating data and example data set 

 
Here is R code to simulate data sets for R sites that are surveyed T times 

and with specified values of the parameters  , p0, p1 and  . 

 
data.fn <- function(R = 100, T = 10, lambda = 5, p0 = 1, p1 = 1, pSD 

= 0.5, nG = 40, xSD = 1){ 

#  R: number of surveyed sites 

#  T: number of surveys at each site 

#  lambda: expected abundance 

#  p0: intercept of detection probability (logit scale) 

#  p1: slope of detection probability on covariate x (logit scale) 

#  pSD: standard deviation of normal distribution from  

#     which observer effects u are drawn 

#  nG: number of different observers (called K in section 2) 

#  xSD: standard deviation of zero-mean normal distribution from 

#  which covariate values x are generated 

 

# State equation: Generate abundance from Poisson distribution 

N <- rpois(R, lambda) 

 

# Draw values of covariate X 

x <- rnorm(R, 0, xSD) 

 

# Generate observer ID array 

gID <- matrix(sort(rep(1:nG, 25)), nrow = R, ncol = T, byrow = TRUE) 

 

# Draw values of covariate X 

x <- rnorm(R, 0, xSD) 

 

# Draw values of observer effects u and put them in R-T matrix 

u0 <- rnorm(nG, 0, pSD) 

u <- matrix(rep(u0, each = 25), nrow = R, byrow = TRUE) 

 

# Compute R-T matrix of detection probability 

p <- plogis(p0 + p1 * x + u) 

 

# Observation equation: Generate counts from Binomial distribution 

y <- array(dim = c(R, T)) 

for(t in 1:T){ 

   y[,t] <- rbinom(R, N, p) 

} 

 

# Return stuff 

return(list(R=R, T=T, lambda=lambda, N=N, nG=nG, p0=p0, p1=p1, p=p, 

gID=gID, pSD=pSD, x=x, y=y, xSD=xSD, u=u, u0=u0)) 

} 

 

To generate one data set, we execute the function definition in R and then 
call the function like this: 

 
simdata <- data.fn() 

str(simdata) 

> str(simdata) 

List of 15 
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 $ R     : num 100 

 $ T     : num 10 

 $ lambda: num 5 

 $ N     : num [1:100] 3 9 5 5 5 8 6 6 3 7 ... 

 $ nG    : num 40 

 $ p0    : num 1 

 $ p1    : num 1 

 $ p     : num [1:100, 1:10] 0.442 0.754 0.919 0.92 0.888 ... 

 $ gID   : int [1:100, 1:10] 1 1 1 2 2 3 3 3 4 4 ... 

 $ pSD   : num 0.5 

 $ x     : num [1:100] -1.749 -0.4 0.916 1.188 0.819 ... 

 $ y     : num [1:100, 1:10] 2 8 5 5 5 7 4 2 3 5 ... 

 $ xSD   : num 1 

 $ u     : num [1:100, 1:10] 0.518 0.518 0.518 0.256 0.256 ... 

 $ u0    : num [1:40] 0.5175 0.2559 -0.0373 -1.0147 0.4959 ... 

 

In this report, we use the data set contained in the R script called 

simNmix.R. We load it into an R workspace: 

 
source("G:\\Nmix-ADMB documentation with Richard\\simNmix.R") 

 

The R workspace now contains the following objects: 
 
ls() 

> ls() 

 [1] "gID"    "lambda" "N"      "nG"     "p"      "p0"     "p1"     

"pSD"    "R"      "T"      "u"      "u0"     "x"      "y"      

 

Now we are ready to fit the model. 
 

4. Code for analysis using BUGS or JAGS when called from R and 
solutions for example data set 

 
We use WinBUGS (or JAGS) called from R, using functionality in the 

R2WinBUGS package (Sturtz et al. 2005) to fit the model to the data set 
just loaded. We first write into the R working directory a text file 

containing the BUGS code to fit the model. Later we define other R objects 
that contain the data, initial values, a list of the parameters to be 

estimated and the MCMC settings. Functions bugs() (or jags()) take all 

of these and sends them to WinBUGS. After execution of the Markov chain 

Monte Carlo (MCMC) analysis in WinBUGS, results are imported back into 

the R workspace and can be inspected and summarized. 
 
# Define model 

sink("Nmix.txt") 

cat(" 

model { 

 

# Priors 

 log(lambda) <- loglam 

 loglam ~ dunif(-10, 10) 

 p0 ~ dunif(-10, 10) 

 p1 ~ dunif(-10, 10) 
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 for(k in 1:nG){ 

    u[k] ~ dnorm(0, tau) 

 } 

 tau <- pow(sigma, -2) 

 sigma ~ dunif(0, 5) 

 

# State equation 

 for (i in 1:R) {  # Loop over sites 

   N[i] ~ dpois(lambda) 

 

   # Observation equation 

   for (t in 1:T) {  # Loop over surveys 

      y[i,t] ~ dbin(p[i,t], N[i]) 

      p[i,t] <- 1 / (1 + exp( -1 * (p0 + p1 * x[i] + u[gID[i,t]]))) 

   } 

 } 

 

# Derived quantities 

totalN <- sum(N[]) # Population size over all R sites 

logsigma <- log(sigma) 

} 

",fill=TRUE) 

sink() 

 

 

# Bundle data 

attach(simdata) 

win.data <- list(y = y, R = R, T = T, x = x, gID = gID, nG = nG) 

 

 

# Inits function 

Nst <- apply(y, 1, max) + 1 

inits <- function(){list(N = Nst, sigma = rlnorm(1))} 

 

 

# Parameters to be estimated 

params <- c("lambda", "loglam", "p0", "p1", "sigma", "logsigma", 

"u", "totalN") 

# Could include "N" to get local population size 

 

 

# MCMC settings (takes about 13 min on a slow laptop) 

nc <- 3 

nb <- 5000 

ni <- 10000 

nt <- 5 

 

# MCMC test settings 

# nc <- 3  ;  nb <- 20  ;  ni <- 120  ;  nt <- 5 

 

 

# Call WinBUGS from R (bugs run time = 7.88 on my desktop) 

out <- bugs(win.data, inits, params, "Nmix.txt", n.chains=nc, 

n.iter=ni, n.burn = nb, n.thin=nt, debug = TRUE, bugs.directory = 

"c:/Programme/WinBUGS14/") 

brt() 
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# Summarize marginal posteriors 

print(out, 3) 
> print(out, 3) 

Inference for Bugs model at "Nmix.txt", fit using WinBUGS, 

 3 chains, each with 10000 iterations (first 5000 discarded), n.thin = 5 

 n.sims = 3000 iterations saved 

             mean     sd     2.5%      25%      50%      75%    97.5%  Rhat n.eff 

lambda      4.813  0.242    4.340    4.644    4.814    4.972    5.293 1.003   710 

loglam      1.570  0.050    1.468    1.536    1.571    1.604    1.666 1.003   730 

p0          0.736  0.093    0.551    0.674    0.736    0.795    0.927 1.004  1300 

p1          1.029  0.072    0.893    0.979    1.028    1.077    1.174 1.002  1500 

sigma       0.459  0.086    0.301    0.401    0.455    0.513    0.639 1.003   680 

logsigma   -0.796  0.191   -1.199   -0.913   -0.787   -0.667   -0.447 1.003   680 

u[1]       -0.361  0.254   -0.862   -0.531   -0.361   -0.188    0.130 1.001  3000 

u[2]       -0.087  0.271   -0.616   -0.272   -0.085    0.112    0.423 1.001  3000 

u[3]       -0.147  0.267   -0.692   -0.322   -0.139    0.035    0.367 1.005   510 

u[4]        0.555  0.297   -0.042    0.359    0.550    0.755    1.125 1.003   870 

u[5]        0.200  0.241   -0.270    0.039    0.204    0.360    0.671 1.004   540 

u[6]        0.268  0.257   -0.220    0.085    0.267    0.445    0.765 1.002  1700 

u[7]       -0.157  0.227   -0.622   -0.304   -0.155   -0.009    0.297 1.001  3000 

u[8]        0.412  0.294   -0.163    0.214    0.412    0.613    0.974 1.004   660 

u[9]        0.188  0.235   -0.281    0.030    0.193    0.345    0.649 1.001  3000 

u[10]       0.510  0.334   -0.116    0.270    0.500    0.739    1.172 1.002  3000 

u[11]      -0.754  0.298   -1.367   -0.951   -0.737   -0.544   -0.205 1.005   460 

u[12]       0.505  0.323   -0.099    0.276    0.493    0.720    1.168 1.001  2600 

u[13]      -0.703  0.270   -1.268   -0.876   -0.688   -0.518   -0.214 1.002  1600 

u[14]      -0.944  0.361   -1.681   -1.178   -0.928   -0.688   -0.281 1.001  2600 

u[15]      -0.015  0.280   -0.552   -0.210   -0.018    0.175    0.560 1.001  2100 

u[16]      -0.137  0.256   -0.663   -0.302   -0.127    0.035    0.325 1.002  1600 

u[17]       0.024  0.357   -0.699   -0.206    0.032    0.257    0.723 1.002  1400 

u[18]       0.132  0.348   -0.566   -0.090    0.136    0.369    0.795 1.001  3000 

u[19]      -0.017  0.241   -0.496   -0.176   -0.023    0.150    0.446 1.001  3000 

u[20]      -0.268  0.223   -0.715   -0.416   -0.263   -0.120    0.172 1.001  3000 

u[21]       0.069  0.290   -0.493   -0.121    0.069    0.259    0.654 1.001  3000 

u[22]      -0.321  0.256   -0.839   -0.485   -0.314   -0.153    0.162 1.001  3000 

u[23]       0.149  0.279   -0.399   -0.036    0.141    0.336    0.707 1.003   720 

u[24]       0.086  0.268   -0.453   -0.090    0.087    0.270    0.613 1.001  3000 

u[25]      -0.243  0.282   -0.827   -0.433   -0.234   -0.049    0.293 1.005   610 

u[26]       0.282  0.295   -0.328    0.099    0.286    0.480    0.862 1.001  3000 

u[27]      -0.127  0.289   -0.691   -0.315   -0.128    0.061    0.450 1.001  3000 

u[28]      -0.317  0.280   -0.864   -0.499   -0.323   -0.137    0.258 1.001  3000 

u[29]      -0.229  0.230   -0.712   -0.372   -0.219   -0.076    0.208 1.002  1500 

u[30]      -0.280  0.254   -0.798   -0.443   -0.276   -0.112    0.207 1.001  2800 

u[31]       0.372  0.262   -0.164    0.198    0.380    0.548    0.850 1.001  3000 

u[32]       0.137  0.280   -0.439   -0.047    0.143    0.328    0.663 1.007   330 

u[33]       0.095  0.262   -0.412   -0.088    0.087    0.273    0.633 1.004   650 

u[34]       0.386  0.270   -0.162    0.219    0.388    0.572    0.902 1.001  3000 

u[35]      -0.131  0.291   -0.687   -0.326   -0.138    0.060    0.434 1.003   780 

u[36]       0.576  0.286    0.042    0.374    0.569    0.761    1.162 1.001  3000 

u[37]      -0.169  0.231   -0.624   -0.327   -0.164   -0.012    0.276 1.002  1300 

u[38]       0.640  0.272    0.140    0.450    0.633    0.826    1.193 1.001  3000 

u[39]      -0.079  0.230   -0.552   -0.229   -0.077    0.075    0.381 1.001  3000 

u[40]      -0.167  0.238   -0.638   -0.323   -0.161   -0.012    0.284 1.001  3000 

totalN    481.793 10.241  463.975  475.000  481.500  488.000  503.000 1.006   340 

deviance 2466.096 14.886 2439.000 2456.000 2465.000 2476.000 2498.000 1.001  3000 

 

For each parameter, n.eff is a crude measure of effective sample size, 

and Rhat is the potential scale reduction factor (at convergence, Rhat=1). 

 

DIC info (using the rule, pD = var(deviance)/2) 

pD = 110.8 and DIC = 2576.9 

DIC is an estimate of expected predictive error (lower deviance is better). 

 

 

# Call JAGS from R (run time = 7.9 min on same desktop) 

# have to installed JAGS software and installed  

# R packages rjags and R2jags. 

library(R2jags) 
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system.time( 

      outJ <- jags(win.data, inits, params, "Nmix.txt", n.chains=nc, 

       n.iter=ni, n.burn = nb, n.thin=nt) 

      ) 

traceplot(outJ)         # Look at convergence 

 

 

# Summarize marginal posteriors 

print(outJ, 3) 
Inference for Bugs model at "Nmix.txt", fit using jags, 

 3 chains, each with 10000 iterations (first 5000 discarded), n.thin = 5 

 n.sims = 3000 iterations saved 

          mu.vect sd.vect     2.5%      25%      50%      75%    97.5%  Rhat n.eff 

lambda      4.813   0.242    4.354    4.656    4.808    4.969    5.313 1.001  3000 

loglam      1.570   0.050    1.471    1.538    1.570    1.603    1.670 1.001  3000 

logsigma   -0.797   0.185   -1.181   -0.916   -0.792   -0.672   -0.448 1.001  3000 

p0          0.732   0.091    0.550    0.673    0.733    0.795    0.909 1.001  2700 

p1          1.028   0.072    0.888    0.979    1.029    1.075    1.171 1.002  1900 

sigma       0.458   0.085    0.307    0.400    0.453    0.511    0.639 1.001  3000 

totalN    481.247  10.242  463.000  474.000  481.000  488.000  503.000 1.001  3000 

u[1]       -0.355   0.256   -0.872   -0.531   -0.356   -0.181    0.130 1.001  3000 

u[2]       -0.095   0.269   -0.618   -0.277   -0.092    0.090    0.430 1.002  1300 

u[3]       -0.158   0.256   -0.695   -0.327   -0.160    0.010    0.332 1.001  2500 

u[4]        0.555   0.297    0.005    0.349    0.553    0.762    1.138 1.003   680 

u[5]        0.199   0.246   -0.290    0.039    0.191    0.364    0.689 1.001  2800 

u[6]        0.290   0.262   -0.211    0.113    0.283    0.464    0.815 1.001  3000 

u[7]       -0.166   0.231   -0.617   -0.321   -0.161   -0.011    0.302 1.001  3000 

u[8]        0.410   0.298   -0.165    0.195    0.410    0.622    0.971 1.002  1600 

u[9]        0.204   0.236   -0.283    0.050    0.207    0.368    0.666 1.001  2700 

u[10]       0.525   0.330   -0.099    0.292    0.516    0.752    1.186 1.001  3000 

u[11]      -0.763   0.295   -1.394   -0.952   -0.763   -0.557   -0.226 1.001  2700 

u[12]       0.508   0.313   -0.085    0.294    0.493    0.717    1.131 1.001  3000 

u[13]      -0.704   0.262   -1.258   -0.874   -0.689   -0.525   -0.230 1.004   550 

u[14]      -0.939   0.356   -1.685   -1.177   -0.926   -0.685   -0.277 1.001  3000 

u[15]       0.002   0.282   -0.550   -0.182    0.004    0.192    0.554 1.002  1000 

u[16]      -0.117   0.248   -0.630   -0.276   -0.106    0.052    0.345 1.002  1600 

u[17]       0.048   0.353   -0.662   -0.183    0.055    0.289    0.713 1.001  3000 

u[18]       0.144   0.345   -0.556   -0.082    0.146    0.370    0.826 1.002  1200 

u[19]      -0.013   0.238   -0.501   -0.165   -0.018    0.146    0.443 1.002  1600 

u[20]      -0.262   0.224   -0.716   -0.406   -0.262   -0.110    0.157 1.001  3000 

u[21]       0.080   0.304   -0.505   -0.127    0.079    0.275    0.681 1.001  3000 

u[22]      -0.309   0.253   -0.812   -0.474   -0.303   -0.137    0.166 1.002  1900 

u[23]       0.154   0.278   -0.386   -0.028    0.153    0.338    0.721 1.003  2500 

u[24]       0.094   0.268   -0.450   -0.085    0.099    0.275    0.614 1.001  3000 

u[25]      -0.239   0.288   -0.824   -0.420   -0.228   -0.047    0.307 1.001  3000 

u[26]       0.263   0.301   -0.375    0.074    0.281    0.467    0.809 1.001  3000 

u[27]      -0.120   0.289   -0.675   -0.304   -0.118    0.064    0.483 1.001  3000 

u[28]      -0.307   0.286   -0.859   -0.498   -0.302   -0.118    0.242 1.001  3000 

u[29]      -0.222   0.221   -0.682   -0.364   -0.218   -0.074    0.197 1.002  1400 

u[30]      -0.261   0.251   -0.766   -0.425   -0.253   -0.084    0.221 1.001  3000 

u[31]       0.369   0.263   -0.167    0.198    0.368    0.544    0.874 1.002  1800 

u[32]       0.139   0.279   -0.414   -0.047    0.146    0.331    0.672 1.001  3000 

u[33]       0.102   0.259   -0.397   -0.071    0.096    0.273    0.624 1.001  3000 

u[34]       0.398   0.264   -0.127    0.225    0.396    0.576    0.909 1.001  3000 

u[35]      -0.127   0.286   -0.680   -0.318   -0.134    0.059    0.448 1.001  3000 

u[36]       0.573   0.284    0.050    0.379    0.564    0.756    1.166 1.002  1100 

u[37]      -0.168   0.225   -0.612   -0.319   -0.165   -0.017    0.266 1.001  3000 

u[38]       0.642   0.269    0.112    0.454    0.637    0.819    1.184 1.001  3000 

u[39]      -0.082   0.226   -0.546   -0.234   -0.077    0.069    0.352 1.001  3000 

u[40]      -0.161   0.241   -0.640   -0.321   -0.159    0.007    0.294 1.001  2200 

deviance 2466.110  15.042 2438.385 2455.543 2465.565 2475.618 2498.301 1.001  3000 

 

For each parameter, n.eff is a crude measure of effective sample size, 

and Rhat is the potential scale reduction factor (at convergence, Rhat=1). 

 

DIC info (using the rule, pD = var(deviance)/2) 

pD = 113.2 and DIC = 2579.3 

DIC is an estimate of expected predictive error (lower deviance is better). 
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5. Code for analysis using ADMB-RE 

 
A primary difference between ADMB and BUGS is that ADMB does not 

allow discrete latent random variables (N’s). Hence, the users must write 

out the likelihood of the model (in C++). This is a good thing because it 
forces the analyst to get a clear understanding of the likelihood of the 

model, but is much more difficult than fitting the model in BUGS, which 
requires only a symbolic description of the model. The likelihood of the N-

mixture model without random effects is 
 

 (Eq 1) 
 

Notice that this is the marginal likelihood obtained by summing out the 
discrete random effects Ni. In practice, the upper bound of the sum is set 

to some number (K) higher than the maximum possible value of N, which 
can be found by ensuring that the MLEs are unchanged at higher values of 

K. 

 
To code this model in ADMB, one must translate Eq 1 into C++. It is not 

helpful to try to translate the BUGS model into ADMB because the BUGS 
model does not show the calculations needed to evaluate the integrated 

likelihood. For example, in the BUGS code, there is no evidence of the 
product-binomial formulation or of the summation over the possible Ni 

because these steps are not needed to implement Gibbs sampling.  
 

In ADMB, two files are required: the .tpl and .dat files, which are attached 
and annotated. Below is the PROCEDURE_SECTION of the .tpl file in which 

the likelihood shown in Eq 1 is specified with the additional random 
observer effects. Again, note that this looks nothing at all like the BUGS 

model file. If computer memory limitations were not a problem, the code 
would be much simpler because the SEPARABLE_FUNCTIONs (SF) would 

not be needed. However, ADMB is memory intensive especially when 

random effects are being estimated, and the SFs allow the problem to be 
partitioned into smaller pieces. The first SF adds the likelihood 

contribution of the random effects, which have been scaled to uo ~ 
Normal(0, 1); this facilitates model convergence. This transformation still 

allows po ~ Normal(mu, σ2) because σ is multiplied by uo in the linear 
model. See the ADMB-RE Manual for more information about this useful 

transformation. 
 

The second SF evaluates the likelihood conditional on each random 
observer effect. Specifically, f(k) is the Poisson density (with mean 

lambda) for each possible value of N. g(k) is the binomial density of the 
observations for each value of N and probabilities p(j) which are a function 

of the covariate x and the fixed and random effects. The likelihood is given 
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by the sum of the product of f and g. What more should be said here? 

People can either read C++ or they can’t.  
 
PROCEDURE_SECTION 

 

  for(int i=1;i<=nG;i++) 

    prior_N01(u(i)); 

 

  for(int i=1;i<=R;i++)      

    nll_group(i, p0,p1,log_lambda,log_sigma,u(ID(i))); 

 

SEPARABLE_FUNCTION void prior_N01(const dvariable& u) 

   nll += 0.5*square(u); 

 

SEPARABLE_FUNCTION void nll_group(int i, const dvariable& p0,const 

dvariable& p1,const dvariable& log_lambda, const dvariable& log_sigma, 

const dvar_vector& u) 

 

  dvariable sigma = exp(log_sigma); 

  dvariable lambda = exp(log_lambda); 

 

  dvar_vector p(1,T);   

  dvar_vector f(1,S); 

  dvar_vector g(1,S); 

 

  for(int k=1;k<=S;k++) 

    f(k) = pow(lambda, N(k)) / exp(lambda + gammln_tab(N(k)+1)); 

 

  for(int j=1;j<=T;j++) 

     p(j) = 1.0/(1.0+exp(-1.0*(p0 + p1*x(i) + sigma*u(IDind(i,j))))); 

       

    for(int k=1;k<=S;k++) { 

      g(k) = 1.0; 

      for(int j=1;j<=T;j++) { 

        if(N(k)>=y(i,j)) 

          g(k) *= exp(gammln_tab(N(k)+1) - gammln_tab(y(i,j)+1) - 

                      gammln_tab(N(k)-y(i,j)+1)) * pow(p, y(i,j)) * 

                      pow(1.0-p, N(k)-y(i,j)); 

        else 

          g(k) = 0.0; 

        } 

      } 

 

  nll -= log(1e-20 + f*g); 

 

TOP_OF_MAIN_SECTION 

  arrmblsize = 40000000L; 

  gradient_structure::set_GRADSTACK_BUFFER_SIZE(30000000); 

  gradient_structure::set_CMPDIF_BUFFER_SIZE(20000000); 

 

 

6. Comparision of results 

 
The following table compares the truth in the data-generation process 

with the estimates from WinBUGS and ADMB-RE. For the former, posterior 
means and standard deviations are given. Fig. 1 provides this comparison 

for the 40 random observer effects. 
 
         Truth bugs.mean bugs.sd admb.est admb.se 
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log(lambda)  1.61      1.61    0.05     1.61    0.05 

p0           1.00      1.02    0.10     1.02    0.10 

p1           1.00      0.96    0.07     0.95    0.07 

log(sigma)  -0.69     -0.66    0.16    -0.71    0.16 

u1          -0.22     -0.26    0.25    -0.45    0.48 

u2           0.12      0.37    0.31     0.74    0.66 

u3           0.30      0.11    0.27     0.31    0.53 

u4          -0.06     -0.37    0.25    -0.68    0.50 

u5          -1.03     -0.65    0.29    -1.22    0.61 

u6           0.29      0.53    0.27     1.09    0.56 

u7           0.24     -0.07    0.34     0.14    0.70 

u8          -0.50     -0.59    0.28    -1.17    0.57 

u9           0.63      0.58    0.29     1.20    0.54 

u10          0.56      0.53    0.24     1.07    0.48 

u11          0.42      0.06    0.28     0.24    0.50 

u12          0.81      0.22    0.31     0.61    0.55 

u13          0.22      0.23    0.28     0.55    0.54 

u14         -1.15     -0.63    0.25    -1.25    0.50 

u15         -0.04     -0.09    0.29    -0.12    0.53 

u16         -0.26     -0.11    0.28    -0.18    0.58 

u17         -0.21     -0.53    0.30    -1.03    0.58 

u18          0.15      0.13    0.22     0.37    0.41 

u19         -0.02     -0.32    0.29    -0.62    0.55 

u20          0.05      0.16    0.30     0.31    0.57 

u21          1.23      0.88    0.34     1.73    0.66 

u22         -0.32     -0.23    0.25    -0.40    0.50 

u23          0.61      0.74    0.28     1.47    0.53 

u24          0.36      0.42    0.31     0.93    0.57 

u25         -0.10      0.01    0.28    -0.01    0.58 

u26          0.71      0.41    0.26     0.83    0.51 

u27          0.64      0.62    0.30     1.29    0.65 

u28          0.29     -0.05    0.28    -0.08    0.55 

u29          0.64      0.58    0.28     1.26    0.49 

u30         -0.44     -0.41    0.23    -0.78    0.46 

u31         -0.07     -0.06    0.28    -0.08    0.57 

u32         -0.60     -0.50    0.26    -1.00    0.51 

u33          0.16      0.14    0.26     0.31    0.51 

u34         -0.54     -0.45    0.30    -0.89    0.60 

u35         -0.26     -0.45    0.28    -0.83    0.55 

u36         -0.04      0.21    0.27     0.47    0.54 

u37         -0.17      0.02    0.33    -0.02    0.67 

u38         -1.13     -0.89    0.26    -1.81    0.52 

u39         -0.14     -0.19    0.29    -0.32    0.60 

u40          0.14      0.06    0.31     0.14    0.73 
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Figure 1.  Comparison of the estimates (+/- SD) of the observer random 
effects.  

 
 

A few patterns are apparent from Table 1 and Fig 1. First, the BUGS and 
ADMB estimates of the fixed effects and variances are very similar. 

Second, differences are more pronounced in the estimates of the random 
effects. The posterior means from WinBUGS were more accurate than the 

ADMB estimates (RMSE = 0.22 vs 0.43). Third, the BUGS estimates were 
more precise than ADMB estimates of the random effects. On average, the 

posterior standard deviations obtained by BUGS were 47% smaller than 

the standard deviations estimated by ADMB.  
 

Not shown in Table 1 and Fig 1 are the estimates of each Ni, which can be 
obtained by BUGS but not ADMB. This is an important advantage of 

BUGS; however, we have shown that it is possible to integrate out the 
discrete random effects while estimating continuous random effects. Thus 

ADMB represents one of the only available software for fitting such 
complex models within the frequentist framework. (Note that ADMB allows 

for Bayesian inference too.) Furthermore, ADMB is much faster than 
WinBUGS, in our example 4 vs. 12 mins. However, in this case, WinBUGS 

was easier to use and provided more precise and accurate estimates of 
the random effects. 
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7. Main challenges encountered in translating BUGS code to ADMB 
 

The main challenges are as follows: 

 
1. One must know something about C++ and the classes used by 

ADMB. 
2. ADMB requires that the user know how to write a likelihood function. 

My guess is that many WinBUGS users could not write even a simple 
likelihood.  

3. ADMB requires much more memory than does WinBUGS.  
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