
 1

Fitting N-mixture models with random observer

effects in BUGS and ADMB

Richard Chandler, Marc Kéry & Hans Skaug, 20 October 2012

1. Introduction

Abundance is the central state variable in much of ecology and its

applications, such as wildlife management and conservation biology.
Typically, abundance must be estimated owing to imperfect detection of

the animals in the wild: some individuals will be overlooked and thus,
counts of animals are rarely equal to true abundance. Instead, abundance

and counts are linked by detection probability, which in this context is the
probability that an individual present appears in a count. A vast array of

sampling designs and models have been developed over the last 50 years
to estimate abundance, e.g. Buckland et al. (2001), Borchers et al.

(2002), Williams et al. (2002) and Royle and Dorazio (2008). Most

protocols to estimate abundance require that individuals can be
individually identified, a condition which often requires capturing and

marking of animals. This is costly and therefore the N-mixture, or binomial
mixture, model of Royle (2004) is an appealing alternative: this model

yields estimates of abundance from spatially and temporally replicated
counts of unmarked animals alone. Typical applications of the Nmix model

require the assumption of some effects as random, for instance, to
account for intrinsic differences in the ability of field ornithologists to

detect and identify birds.

In section 2, this report provides a brief description of the Nmix model and
in section 3 R code is shown to simulate data with a fixed covariate effect

and a random observer effect on detection probability. In section 4, the
Nmix model is fitted to one simulated data set using WinBUGS (or JAGS)

called from R and in section 5, the same is done for AD Model Builder with

its random effects module, referred to here ADMB-RE. Section 6 compares
the results from the two programs and Section 7 briefly discusses the

main challenges encountered when translating BUGS code to ADMB.

2. Model description

We assume our data yit are the number y of individuals counted at site i (i
= 1…R) at time t (t = 1…T). We make the assumption that the total period

over which the T replicated counts are made is sufficiently short that the
population size Ni at each site may be assumed unchanged. The

relationship between the observed counts yit and the underlying
abundances at each site i, Ni, may be described by just two equations.

The first equation, the state equation, describes the latent abundance Ni
at site i and the second, the observation equation, describes the observed

counts yit as a function of that latent abundance:

 2

1. State equation: ~ ()iiN Poisson

2. Observation equation: | ~ (,)i i itity N Binomial N p

In the state equation, i is the expected abundance at site i and the

Poisson distribution is the standard description of the spatial variation of

abundance. Possible alternatives for a Poisson include the negative
binomial (Royle 2004), Poisson-lognormal (Royle and Dorazio 2008) or a

zero-inflated Poisson distribution (Wenger and Freeman 2008; Kéry and

Schaub 2011). The expected abundance i is indexed i, allowing it to vary

by site. Thus, unstructured heterogeneity among sites could be modelled
by incorporating random site effects, resulting in a Poisson-lognormal

distribution in the state equation. Alternatively, the effects of recognized
and measured covariates that vary among sites (‘site covariates’) could be

modeled linearly in a GLM fashion via a log link function.

In the observation equation, we assume a Binomial distribution with trial
size Ni and success probability pit to describe the variability of the

observed counts yit. The parameter pit represents the detection
probability. The choice of a Binomial observation process implies the

assumption that there are no false-positive errors, i.e. no double counts or
other species counted erroneously as the target species. Since pit is

indexed by both site i and survey t, we can let it vary by site or survey or
by a combination of site and survey by modeling unstructured

heterogeneity via random site, survey or site-by-survey effects. Similarly,

effects of site covariates or of covariates varying by site and survey
(‘survey covariates’) can be modeled in a linear GLM fashion via a logit

link. Of course, in some cases we may simply assume that either or both

parameters of the mixture model are constant, i.e. i and it pp .

In this report, we adopt a state equation with constant and an

observation equation with a fixed effect p1 of a site covariate x and an
observer random effect uk.

~ ()iN Poisson

| ~ (,)i i itity N Binomial N p

0 1 ()logit() * i k ititp p p x u , with ~ (0,)ku Normal

uk(it) is the effect of observer k surveying site i at time t. We assume that
uk is a draw from a zero-mean normal distribution with standard deviation
 . The parameters to be estimated are: log() , p0, p1, log() and the

random observer effects uk.

 3

3. Simulating data and example data set

Here is R code to simulate data sets for R sites that are surveyed T times

and with specified values of the parameters , p0, p1 and .

data.fn <- function(R = 100, T = 10, lambda = 5, p0 = 1, p1 = 1, pSD

= 0.5, nG = 40, xSD = 1){

R: number of surveyed sites

T: number of surveys at each site

lambda: expected abundance

p0: intercept of detection probability (logit scale)

p1: slope of detection probability on covariate x (logit scale)

pSD: standard deviation of normal distribution from

which observer effects u are drawn

nG: number of different observers (called K in section 2)

xSD: standard deviation of zero-mean normal distribution from

which covariate values x are generated

State equation: Generate abundance from Poisson distribution

N <- rpois(R, lambda)

Draw values of covariate X

x <- rnorm(R, 0, xSD)

Generate observer ID array

gID <- matrix(sort(rep(1:nG, 25)), nrow = R, ncol = T, byrow = TRUE)

Draw values of covariate X

x <- rnorm(R, 0, xSD)

Draw values of observer effects u and put them in R-T matrix

u0 <- rnorm(nG, 0, pSD)

u <- matrix(rep(u0, each = 25), nrow = R, byrow = TRUE)

Compute R-T matrix of detection probability

p <- plogis(p0 + p1 * x + u)

Observation equation: Generate counts from Binomial distribution

y <- array(dim = c(R, T))

for(t in 1:T){

 y[,t] <- rbinom(R, N, p)

}

Return stuff

return(list(R=R, T=T, lambda=lambda, N=N, nG=nG, p0=p0, p1=p1, p=p,

gID=gID, pSD=pSD, x=x, y=y, xSD=xSD, u=u, u0=u0))

}

To generate one data set, we execute the function definition in R and then
call the function like this:

simdata <- data.fn()

str(simdata)

> str(simdata)

List of 15

 4

 $ R : num 100

 $ T : num 10

 $ lambda: num 5

 $ N : num [1:100] 3 9 5 5 5 8 6 6 3 7 ...

 $ nG : num 40

 $ p0 : num 1

 $ p1 : num 1

 $ p : num [1:100, 1:10] 0.442 0.754 0.919 0.92 0.888 ...

 $ gID : int [1:100, 1:10] 1 1 1 2 2 3 3 3 4 4 ...

 $ pSD : num 0.5

 $ x : num [1:100] -1.749 -0.4 0.916 1.188 0.819 ...

 $ y : num [1:100, 1:10] 2 8 5 5 5 7 4 2 3 5 ...

 $ xSD : num 1

 $ u : num [1:100, 1:10] 0.518 0.518 0.518 0.256 0.256 ...

 $ u0 : num [1:40] 0.5175 0.2559 -0.0373 -1.0147 0.4959 ...

In this report, we use the data set contained in the R script called

simNmix.R. We load it into an R workspace:

source("G:\\Nmix-ADMB documentation with Richard\\simNmix.R")

The R workspace now contains the following objects:

ls()

> ls()

 [1] "gID" "lambda" "N" "nG" "p" "p0" "p1"

"pSD" "R" "T" "u" "u0" "x" "y"

Now we are ready to fit the model.

4. Code for analysis using BUGS or JAGS when called from R and
solutions for example data set

We use WinBUGS (or JAGS) called from R, using functionality in the

R2WinBUGS package (Sturtz et al. 2005) to fit the model to the data set
just loaded. We first write into the R working directory a text file

containing the BUGS code to fit the model. Later we define other R objects
that contain the data, initial values, a list of the parameters to be

estimated and the MCMC settings. Functions bugs() (or jags()) take all

of these and sends them to WinBUGS. After execution of the Markov chain

Monte Carlo (MCMC) analysis in WinBUGS, results are imported back into

the R workspace and can be inspected and summarized.

Define model

sink("Nmix.txt")

cat("

model {

Priors

 log(lambda) <- loglam

 loglam ~ dunif(-10, 10)

 p0 ~ dunif(-10, 10)

 p1 ~ dunif(-10, 10)

 5

 for(k in 1:nG){

 u[k] ~ dnorm(0, tau)

 }

 tau <- pow(sigma, -2)

 sigma ~ dunif(0, 5)

State equation

 for (i in 1:R) { # Loop over sites

 N[i] ~ dpois(lambda)

 # Observation equation

 for (t in 1:T) { # Loop over surveys

 y[i,t] ~ dbin(p[i,t], N[i])

 p[i,t] <- 1 / (1 + exp(-1 * (p0 + p1 * x[i] + u[gID[i,t]])))

 }

 }

Derived quantities

totalN <- sum(N[]) # Population size over all R sites

logsigma <- log(sigma)

}

",fill=TRUE)

sink()

Bundle data

attach(simdata)

win.data <- list(y = y, R = R, T = T, x = x, gID = gID, nG = nG)

Inits function

Nst <- apply(y, 1, max) + 1

inits <- function(){list(N = Nst, sigma = rlnorm(1))}

Parameters to be estimated

params <- c("lambda", "loglam", "p0", "p1", "sigma", "logsigma",

"u", "totalN")

Could include "N" to get local population size

MCMC settings (takes about 13 min on a slow laptop)

nc <- 3

nb <- 5000

ni <- 10000

nt <- 5

MCMC test settings

nc <- 3 ; nb <- 20 ; ni <- 120 ; nt <- 5

Call WinBUGS from R (bugs run time = 7.88 on my desktop)

out <- bugs(win.data, inits, params, "Nmix.txt", n.chains=nc,

n.iter=ni, n.burn = nb, n.thin=nt, debug = TRUE, bugs.directory =

"c:/Programme/WinBUGS14/")

brt()

 6

Summarize marginal posteriors

print(out, 3)
> print(out, 3)

Inference for Bugs model at "Nmix.txt", fit using WinBUGS,

 3 chains, each with 10000 iterations (first 5000 discarded), n.thin = 5

 n.sims = 3000 iterations saved

 mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff

lambda 4.813 0.242 4.340 4.644 4.814 4.972 5.293 1.003 710

loglam 1.570 0.050 1.468 1.536 1.571 1.604 1.666 1.003 730

p0 0.736 0.093 0.551 0.674 0.736 0.795 0.927 1.004 1300

p1 1.029 0.072 0.893 0.979 1.028 1.077 1.174 1.002 1500

sigma 0.459 0.086 0.301 0.401 0.455 0.513 0.639 1.003 680

logsigma -0.796 0.191 -1.199 -0.913 -0.787 -0.667 -0.447 1.003 680

u[1] -0.361 0.254 -0.862 -0.531 -0.361 -0.188 0.130 1.001 3000

u[2] -0.087 0.271 -0.616 -0.272 -0.085 0.112 0.423 1.001 3000

u[3] -0.147 0.267 -0.692 -0.322 -0.139 0.035 0.367 1.005 510

u[4] 0.555 0.297 -0.042 0.359 0.550 0.755 1.125 1.003 870

u[5] 0.200 0.241 -0.270 0.039 0.204 0.360 0.671 1.004 540

u[6] 0.268 0.257 -0.220 0.085 0.267 0.445 0.765 1.002 1700

u[7] -0.157 0.227 -0.622 -0.304 -0.155 -0.009 0.297 1.001 3000

u[8] 0.412 0.294 -0.163 0.214 0.412 0.613 0.974 1.004 660

u[9] 0.188 0.235 -0.281 0.030 0.193 0.345 0.649 1.001 3000

u[10] 0.510 0.334 -0.116 0.270 0.500 0.739 1.172 1.002 3000

u[11] -0.754 0.298 -1.367 -0.951 -0.737 -0.544 -0.205 1.005 460

u[12] 0.505 0.323 -0.099 0.276 0.493 0.720 1.168 1.001 2600

u[13] -0.703 0.270 -1.268 -0.876 -0.688 -0.518 -0.214 1.002 1600

u[14] -0.944 0.361 -1.681 -1.178 -0.928 -0.688 -0.281 1.001 2600

u[15] -0.015 0.280 -0.552 -0.210 -0.018 0.175 0.560 1.001 2100

u[16] -0.137 0.256 -0.663 -0.302 -0.127 0.035 0.325 1.002 1600

u[17] 0.024 0.357 -0.699 -0.206 0.032 0.257 0.723 1.002 1400

u[18] 0.132 0.348 -0.566 -0.090 0.136 0.369 0.795 1.001 3000

u[19] -0.017 0.241 -0.496 -0.176 -0.023 0.150 0.446 1.001 3000

u[20] -0.268 0.223 -0.715 -0.416 -0.263 -0.120 0.172 1.001 3000

u[21] 0.069 0.290 -0.493 -0.121 0.069 0.259 0.654 1.001 3000

u[22] -0.321 0.256 -0.839 -0.485 -0.314 -0.153 0.162 1.001 3000

u[23] 0.149 0.279 -0.399 -0.036 0.141 0.336 0.707 1.003 720

u[24] 0.086 0.268 -0.453 -0.090 0.087 0.270 0.613 1.001 3000

u[25] -0.243 0.282 -0.827 -0.433 -0.234 -0.049 0.293 1.005 610

u[26] 0.282 0.295 -0.328 0.099 0.286 0.480 0.862 1.001 3000

u[27] -0.127 0.289 -0.691 -0.315 -0.128 0.061 0.450 1.001 3000

u[28] -0.317 0.280 -0.864 -0.499 -0.323 -0.137 0.258 1.001 3000

u[29] -0.229 0.230 -0.712 -0.372 -0.219 -0.076 0.208 1.002 1500

u[30] -0.280 0.254 -0.798 -0.443 -0.276 -0.112 0.207 1.001 2800

u[31] 0.372 0.262 -0.164 0.198 0.380 0.548 0.850 1.001 3000

u[32] 0.137 0.280 -0.439 -0.047 0.143 0.328 0.663 1.007 330

u[33] 0.095 0.262 -0.412 -0.088 0.087 0.273 0.633 1.004 650

u[34] 0.386 0.270 -0.162 0.219 0.388 0.572 0.902 1.001 3000

u[35] -0.131 0.291 -0.687 -0.326 -0.138 0.060 0.434 1.003 780

u[36] 0.576 0.286 0.042 0.374 0.569 0.761 1.162 1.001 3000

u[37] -0.169 0.231 -0.624 -0.327 -0.164 -0.012 0.276 1.002 1300

u[38] 0.640 0.272 0.140 0.450 0.633 0.826 1.193 1.001 3000

u[39] -0.079 0.230 -0.552 -0.229 -0.077 0.075 0.381 1.001 3000

u[40] -0.167 0.238 -0.638 -0.323 -0.161 -0.012 0.284 1.001 3000

totalN 481.793 10.241 463.975 475.000 481.500 488.000 503.000 1.006 340

deviance 2466.096 14.886 2439.000 2456.000 2465.000 2476.000 2498.000 1.001 3000

For each parameter, n.eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)

pD = 110.8 and DIC = 2576.9

DIC is an estimate of expected predictive error (lower deviance is better).

Call JAGS from R (run time = 7.9 min on same desktop)

have to installed JAGS software and installed

R packages rjags and R2jags.

library(R2jags)

 7

system.time(

 outJ <- jags(win.data, inits, params, "Nmix.txt", n.chains=nc,

 n.iter=ni, n.burn = nb, n.thin=nt)

)

traceplot(outJ) # Look at convergence

Summarize marginal posteriors

print(outJ, 3)
Inference for Bugs model at "Nmix.txt", fit using jags,

 3 chains, each with 10000 iterations (first 5000 discarded), n.thin = 5

 n.sims = 3000 iterations saved

 mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff

lambda 4.813 0.242 4.354 4.656 4.808 4.969 5.313 1.001 3000

loglam 1.570 0.050 1.471 1.538 1.570 1.603 1.670 1.001 3000

logsigma -0.797 0.185 -1.181 -0.916 -0.792 -0.672 -0.448 1.001 3000

p0 0.732 0.091 0.550 0.673 0.733 0.795 0.909 1.001 2700

p1 1.028 0.072 0.888 0.979 1.029 1.075 1.171 1.002 1900

sigma 0.458 0.085 0.307 0.400 0.453 0.511 0.639 1.001 3000

totalN 481.247 10.242 463.000 474.000 481.000 488.000 503.000 1.001 3000

u[1] -0.355 0.256 -0.872 -0.531 -0.356 -0.181 0.130 1.001 3000

u[2] -0.095 0.269 -0.618 -0.277 -0.092 0.090 0.430 1.002 1300

u[3] -0.158 0.256 -0.695 -0.327 -0.160 0.010 0.332 1.001 2500

u[4] 0.555 0.297 0.005 0.349 0.553 0.762 1.138 1.003 680

u[5] 0.199 0.246 -0.290 0.039 0.191 0.364 0.689 1.001 2800

u[6] 0.290 0.262 -0.211 0.113 0.283 0.464 0.815 1.001 3000

u[7] -0.166 0.231 -0.617 -0.321 -0.161 -0.011 0.302 1.001 3000

u[8] 0.410 0.298 -0.165 0.195 0.410 0.622 0.971 1.002 1600

u[9] 0.204 0.236 -0.283 0.050 0.207 0.368 0.666 1.001 2700

u[10] 0.525 0.330 -0.099 0.292 0.516 0.752 1.186 1.001 3000

u[11] -0.763 0.295 -1.394 -0.952 -0.763 -0.557 -0.226 1.001 2700

u[12] 0.508 0.313 -0.085 0.294 0.493 0.717 1.131 1.001 3000

u[13] -0.704 0.262 -1.258 -0.874 -0.689 -0.525 -0.230 1.004 550

u[14] -0.939 0.356 -1.685 -1.177 -0.926 -0.685 -0.277 1.001 3000

u[15] 0.002 0.282 -0.550 -0.182 0.004 0.192 0.554 1.002 1000

u[16] -0.117 0.248 -0.630 -0.276 -0.106 0.052 0.345 1.002 1600

u[17] 0.048 0.353 -0.662 -0.183 0.055 0.289 0.713 1.001 3000

u[18] 0.144 0.345 -0.556 -0.082 0.146 0.370 0.826 1.002 1200

u[19] -0.013 0.238 -0.501 -0.165 -0.018 0.146 0.443 1.002 1600

u[20] -0.262 0.224 -0.716 -0.406 -0.262 -0.110 0.157 1.001 3000

u[21] 0.080 0.304 -0.505 -0.127 0.079 0.275 0.681 1.001 3000

u[22] -0.309 0.253 -0.812 -0.474 -0.303 -0.137 0.166 1.002 1900

u[23] 0.154 0.278 -0.386 -0.028 0.153 0.338 0.721 1.003 2500

u[24] 0.094 0.268 -0.450 -0.085 0.099 0.275 0.614 1.001 3000

u[25] -0.239 0.288 -0.824 -0.420 -0.228 -0.047 0.307 1.001 3000

u[26] 0.263 0.301 -0.375 0.074 0.281 0.467 0.809 1.001 3000

u[27] -0.120 0.289 -0.675 -0.304 -0.118 0.064 0.483 1.001 3000

u[28] -0.307 0.286 -0.859 -0.498 -0.302 -0.118 0.242 1.001 3000

u[29] -0.222 0.221 -0.682 -0.364 -0.218 -0.074 0.197 1.002 1400

u[30] -0.261 0.251 -0.766 -0.425 -0.253 -0.084 0.221 1.001 3000

u[31] 0.369 0.263 -0.167 0.198 0.368 0.544 0.874 1.002 1800

u[32] 0.139 0.279 -0.414 -0.047 0.146 0.331 0.672 1.001 3000

u[33] 0.102 0.259 -0.397 -0.071 0.096 0.273 0.624 1.001 3000

u[34] 0.398 0.264 -0.127 0.225 0.396 0.576 0.909 1.001 3000

u[35] -0.127 0.286 -0.680 -0.318 -0.134 0.059 0.448 1.001 3000

u[36] 0.573 0.284 0.050 0.379 0.564 0.756 1.166 1.002 1100

u[37] -0.168 0.225 -0.612 -0.319 -0.165 -0.017 0.266 1.001 3000

u[38] 0.642 0.269 0.112 0.454 0.637 0.819 1.184 1.001 3000

u[39] -0.082 0.226 -0.546 -0.234 -0.077 0.069 0.352 1.001 3000

u[40] -0.161 0.241 -0.640 -0.321 -0.159 0.007 0.294 1.001 2200

deviance 2466.110 15.042 2438.385 2455.543 2465.565 2475.618 2498.301 1.001 3000

For each parameter, n.eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)

pD = 113.2 and DIC = 2579.3

DIC is an estimate of expected predictive error (lower deviance is better).

 8

5. Code for analysis using ADMB-RE

A primary difference between ADMB and BUGS is that ADMB does not

allow discrete latent random variables (N’s). Hence, the users must write

out the likelihood of the model (in C++). This is a good thing because it
forces the analyst to get a clear understanding of the likelihood of the

model, but is much more difficult than fitting the model in BUGS, which
requires only a symbolic description of the model. The likelihood of the N-

mixture model without random effects is

 (Eq 1)

Notice that this is the marginal likelihood obtained by summing out the
discrete random effects Ni. In practice, the upper bound of the sum is set

to some number (K) higher than the maximum possible value of N, which
can be found by ensuring that the MLEs are unchanged at higher values of

K.

To code this model in ADMB, one must translate Eq 1 into C++. It is not

helpful to try to translate the BUGS model into ADMB because the BUGS
model does not show the calculations needed to evaluate the integrated

likelihood. For example, in the BUGS code, there is no evidence of the
product-binomial formulation or of the summation over the possible Ni

because these steps are not needed to implement Gibbs sampling.

In ADMB, two files are required: the .tpl and .dat files, which are attached
and annotated. Below is the PROCEDURE_SECTION of the .tpl file in which

the likelihood shown in Eq 1 is specified with the additional random
observer effects. Again, note that this looks nothing at all like the BUGS

model file. If computer memory limitations were not a problem, the code
would be much simpler because the SEPARABLE_FUNCTIONs (SF) would

not be needed. However, ADMB is memory intensive especially when

random effects are being estimated, and the SFs allow the problem to be
partitioned into smaller pieces. The first SF adds the likelihood

contribution of the random effects, which have been scaled to uo ~
Normal(0, 1); this facilitates model convergence. This transformation still

allows po ~ Normal(mu, σ2) because σ is multiplied by uo in the linear
model. See the ADMB-RE Manual for more information about this useful

transformation.

The second SF evaluates the likelihood conditional on each random
observer effect. Specifically, f(k) is the Poisson density (with mean

lambda) for each possible value of N. g(k) is the binomial density of the
observations for each value of N and probabilities p(j) which are a function

of the covariate x and the fixed and random effects. The likelihood is given

 9

by the sum of the product of f and g. What more should be said here?

People can either read C++ or they can’t.

PROCEDURE_SECTION

 for(int i=1;i<=nG;i++)

 prior_N01(u(i));

 for(int i=1;i<=R;i++)

 nll_group(i, p0,p1,log_lambda,log_sigma,u(ID(i)));

SEPARABLE_FUNCTION void prior_N01(const dvariable& u)

 nll += 0.5*square(u);

SEPARABLE_FUNCTION void nll_group(int i, const dvariable& p0,const

dvariable& p1,const dvariable& log_lambda, const dvariable& log_sigma,

const dvar_vector& u)

 dvariable sigma = exp(log_sigma);

 dvariable lambda = exp(log_lambda);

 dvar_vector p(1,T);

 dvar_vector f(1,S);

 dvar_vector g(1,S);

 for(int k=1;k<=S;k++)

 f(k) = pow(lambda, N(k)) / exp(lambda + gammln_tab(N(k)+1));

 for(int j=1;j<=T;j++)

 p(j) = 1.0/(1.0+exp(-1.0*(p0 + p1*x(i) + sigma*u(IDind(i,j)))));

 for(int k=1;k<=S;k++) {

 g(k) = 1.0;

 for(int j=1;j<=T;j++) {

 if(N(k)>=y(i,j))

 g(k) *= exp(gammln_tab(N(k)+1) - gammln_tab(y(i,j)+1) -

 gammln_tab(N(k)-y(i,j)+1)) * pow(p, y(i,j)) *

 pow(1.0-p, N(k)-y(i,j));

 else

 g(k) = 0.0;

 }

 }

 nll -= log(1e-20 + f*g);

TOP_OF_MAIN_SECTION

 arrmblsize = 40000000L;

 gradient_structure::set_GRADSTACK_BUFFER_SIZE(30000000);

 gradient_structure::set_CMPDIF_BUFFER_SIZE(20000000);

6. Comparision of results

The following table compares the truth in the data-generation process

with the estimates from WinBUGS and ADMB-RE. For the former, posterior
means and standard deviations are given. Fig. 1 provides this comparison

for the 40 random observer effects.

 Truth bugs.mean bugs.sd admb.est admb.se

 10

log(lambda) 1.61 1.61 0.05 1.61 0.05

p0 1.00 1.02 0.10 1.02 0.10

p1 1.00 0.96 0.07 0.95 0.07

log(sigma) -0.69 -0.66 0.16 -0.71 0.16

u1 -0.22 -0.26 0.25 -0.45 0.48

u2 0.12 0.37 0.31 0.74 0.66

u3 0.30 0.11 0.27 0.31 0.53

u4 -0.06 -0.37 0.25 -0.68 0.50

u5 -1.03 -0.65 0.29 -1.22 0.61

u6 0.29 0.53 0.27 1.09 0.56

u7 0.24 -0.07 0.34 0.14 0.70

u8 -0.50 -0.59 0.28 -1.17 0.57

u9 0.63 0.58 0.29 1.20 0.54

u10 0.56 0.53 0.24 1.07 0.48

u11 0.42 0.06 0.28 0.24 0.50

u12 0.81 0.22 0.31 0.61 0.55

u13 0.22 0.23 0.28 0.55 0.54

u14 -1.15 -0.63 0.25 -1.25 0.50

u15 -0.04 -0.09 0.29 -0.12 0.53

u16 -0.26 -0.11 0.28 -0.18 0.58

u17 -0.21 -0.53 0.30 -1.03 0.58

u18 0.15 0.13 0.22 0.37 0.41

u19 -0.02 -0.32 0.29 -0.62 0.55

u20 0.05 0.16 0.30 0.31 0.57

u21 1.23 0.88 0.34 1.73 0.66

u22 -0.32 -0.23 0.25 -0.40 0.50

u23 0.61 0.74 0.28 1.47 0.53

u24 0.36 0.42 0.31 0.93 0.57

u25 -0.10 0.01 0.28 -0.01 0.58

u26 0.71 0.41 0.26 0.83 0.51

u27 0.64 0.62 0.30 1.29 0.65

u28 0.29 -0.05 0.28 -0.08 0.55

u29 0.64 0.58 0.28 1.26 0.49

u30 -0.44 -0.41 0.23 -0.78 0.46

u31 -0.07 -0.06 0.28 -0.08 0.57

u32 -0.60 -0.50 0.26 -1.00 0.51

u33 0.16 0.14 0.26 0.31 0.51

u34 -0.54 -0.45 0.30 -0.89 0.60

u35 -0.26 -0.45 0.28 -0.83 0.55

u36 -0.04 0.21 0.27 0.47 0.54

u37 -0.17 0.02 0.33 -0.02 0.67

u38 -1.13 -0.89 0.26 -1.81 0.52

u39 -0.14 -0.19 0.29 -0.32 0.60

u40 0.14 0.06 0.31 0.14 0.73

 11

Figure 1. Comparison of the estimates (+/- SD) of the observer random
effects.

A few patterns are apparent from Table 1 and Fig 1. First, the BUGS and
ADMB estimates of the fixed effects and variances are very similar.

Second, differences are more pronounced in the estimates of the random
effects. The posterior means from WinBUGS were more accurate than the

ADMB estimates (RMSE = 0.22 vs 0.43). Third, the BUGS estimates were
more precise than ADMB estimates of the random effects. On average, the

posterior standard deviations obtained by BUGS were 47% smaller than

the standard deviations estimated by ADMB.

Not shown in Table 1 and Fig 1 are the estimates of each Ni, which can be
obtained by BUGS but not ADMB. This is an important advantage of

BUGS; however, we have shown that it is possible to integrate out the
discrete random effects while estimating continuous random effects. Thus

ADMB represents one of the only available software for fitting such
complex models within the frequentist framework. (Note that ADMB allows

for Bayesian inference too.) Furthermore, ADMB is much faster than
WinBUGS, in our example 4 vs. 12 mins. However, in this case, WinBUGS

was easier to use and provided more precise and accurate estimates of
the random effects.

 12

7. Main challenges encountered in translating BUGS code to ADMB

The main challenges are as follows:

1. One must know something about C++ and the classes used by

ADMB.
2. ADMB requires that the user know how to write a likelihood function.

My guess is that many WinBUGS users could not write even a simple
likelihood.

3. ADMB requires much more memory than does WinBUGS.

References

Borchers, D. L., Buckland, S. T., and Zucchini, W. 2002. Estimating Animal

Abundance. Springer, London.
Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers,

D. L., and Thomas, L. 2001. Introduction to distance sampling. Oxford
University Press, Oxford.

Kéry, M., and Schaub, M. 2011. Bayesian population analysis using
WinBUGS – a hierarchical perspective. Academic Press.

Royle, J. A. 2004. N-mixture models for estimating population size from
spatially replicated counts. Biometrics 60: 108–115.

Royle, J. A., and Dorazio, R. M. 2008. Hierarchical modeling and inference
in ecology. Academic Press, Amsterdam.

Sturtz, S., Ligges, U., and Gelman, A. 2005. R2WinBUGS: A package for
running WinBUGS from R. Journal of Statistical Software 12: 1–16.

Wenger, S. J., and Freeman, M. C. 2008. Estimating species occurrence,

abundance, and detection probability using zero-inflated distributions.
Ecology 89: 2953–2959.

Williams, B. K., Nichols, J. D., and Conroy, M. J. 2002. Analysis and
management of animal populations. Academic Press, San Diego, CA.

