Tadpole writeup

Ben Bolker

July 30, 2012

Contents
1
2 Introduction| 2
[3 Basics 3
4R 5
/ wting L L)
4 P gl . 8
4.3 MCOMCE . .. o . 8
|5 AD Model Builder (via R2admb)| 11
5.1 Profilingl 15
0.2 MCMCI 16
6 BUGS 20
[r__Simulation results| 23

1 Summary

This is a relatively simple nonlinear fitting problem. With reasonable start-
ing values (which are fairly easy to guess by direct graphical examination of
the data), none of the approaches is problematic. This example is a good in-
troduction to the basics of input (formatting and data), running, and output
(retrieving results) using the different approaches.

e ADMB works fastest and has the most reliable "basic’ (quadratic) con-
fidence intervals.

e With box constraints set, the standard optimizers in R also work fine,
and quickly.

e BUGS (here using JAGS) is much slower but still, for this simple
problem, pretty quick and robust, although there is no clear advantage
to using BUGS for this problem (unless e.g. one wanted to introduce
informative priors).

2 Introduction

The data are originally from Vonesh and Bolker| (2005) (these data are also
described and analyzed in [Bolker| (2008)), describing the numbers of reed
frog (Hyperolius spinigularis) tadpoles killed by predators as a function of
size in a small-scale field trial. (TBL is total body length in mm, Kill is the
number killed out of 10 tadpoles exposed to predation). Figure (1| shows the
data.

Our main interest is in a quantitative description of the “window of
vulnerability” — the unimodal pattern of proportion killed as a function of
size. In various contexts, we can use this description either to describe and
test differences among treatments (e.g., does the window of vulnerability
differ by predator size, or with tadpoles exposed to different predator cues?)
or to project the effects of growth and mortality rates through a life stage (see
references above and |[McCoy et al.| (2011)) for more details and examples).

This is one of the most basic examples developed by the NCEAS nonlin-
ear modeling working group, with few of the more challenging components
incorporated in the more complex examples. In particular, the data are

3

e small (there were 3 trials for each of 6 size classes);
e well-behaved (no missing data, no extreme outliers);

e fully specified (no observation errors, latent variables, or random ef-
fects);

e low-dimensional (a single predictor variable (TBL) and a single re-
sponse (number killed);

e casy to describe mechanistically (it is reasonable to assume a binomial
distribution or some variant of it).

3 Basics

Load all the packages we’ll need, up front (not all of these are absolutely nec-
essary, but it will be most convenient to make sure you have them installed
now).

> library(ggplot2) ## pictures

> theme_update (theme_bw()) ## I dislike the default gray background
> library(bbmle) ## MLE fitting in R (wrapper)

> library(optimx) ## additional R optimizers

> library(MCMCpack) ## for post-hoc MCMC in R

> library(coda) ## analysis of MCMC runs (R, BUGS, ADMB)

> library(scapeMCMC) ## prettier MCMC diagnostics

> library(R2admb) ## R interface to AD Model Builder

> library(R2jags) ## R interface to JAGS (BUGS dialect)

> source("../R/tadpole_R_funs.R")

This version uses R Under development (unstable) (2012-07-27 r60007)

and package versions:

bbmle coda ggplot2 MCMCpack optimx R2admb
1.0.5.1 0.15-1 0.9.1 1.2-4 2012.04.01 0.7.5.3

The data are very simple:
> (ReedfrogSizepred <- read.table("../DATA/tadpole.dat"))

TBL Kill Exposed

1 9 0 10
2 9 2 10
3 9 1 10
4 12 3 10
5 12 4 10
6 12 5 10
7T 21 0 10
8 21 0 10
9 21 0 10
10 25 0 10
11 25 1 10
12 25 0 10
13 37 0 10
14 37 0 10
15 37 0 10

R2jags
0.03-07

0.5

0.4
he]
0.3 n
=
c 1
o
B ° 2
g 3

)

202
o

0.1

0.0

T T

0 10 30

20
Size (total body length)

Figure 1: Proportions of reed frogs killed by predators, as a function of total

body length in mm. Red: starting estimate. Blue/gray fill: nonparametric
(loess) fit.

We need a nonlinear function that is flexible enough to increase, decrease,
and change its shape. We chose

P(kill) = ¢((5/d) exp(1 — (5/d)))?, (1)

sometimes called the “power-Ricker” function (in its simplest form, it is
a variant of the Ricker function y = xexp(—z) raised to a power: y =
(xexp(—x))?. The d and ¢ parameters adjust the scale of the function in
the z and y directions respectively. A bit of calculation or numerical experi-
mentation will show that this function is equal to zero when S = 0; declines
to zero as S gets large; initially increases as ¢(S/d)? (e.g. linearly if ¢ = 1
(Ricker), quadratically if g = 2); and peaks when S = d at a height c. D
Looking at the plot (a luxury we have in the low-dimensional case), we can

see that a reasonable starting set of estimates would be
e g =1 (the Ricker model; linear increase near S = 0);
e c =045,
e d=13

(Figure [1] illustrates the initial values).

The remainder of the model formulation describes the stochastic part of
the model. Although it is slightly questionable whether tadpoles within a
tank are identically vulnerable and killed independently of each other, we
will go ahead and use a binomial model anyway:

Killed ~ Binomial(P(kill), V) (2)

4 R

4.1 Fitting

In R we’ll use the mle2 function from the bbmle package. There is no
particular computational advantage to mle2 over the various optimizers in
R (optim, nlm, and nlminb in base R, or the variants found in the optimx
package) — it is just a wrapper that provides various conveniences (profiling,
confidence intervals, predictions, etc.) for maximum likelihood estimation
problems.

'A different form of “generalized Ricker” was used in [Vonesh and Bolker| (2005); as
described by Bolker| (2008)), that turned out to be a poor choice, because the same data
could be described in quite different ways by a single function (i.e., the likelihood surface
has multiple maxima.

Here is the code to fit a binomial model with mle2 using these starting
points:

> library(bbmle)
> tadpole_R_fit

function (data = ReedfrogSizepred, start = list(c = 0.45, d = 13,

g =1))
{
mle2(Kill ~ dbinom(c * ((TBL/d) * exp(l - TBL/d)) g, size = Exposed),
start = start, data = data, method = "L-BFGS-B", lower = c(c = 0.003,
d = 10, g = 0), upper = c(c = 0.8, d = 20, g = 50),
control = list(parscale = c(c = 0.5, d = 10, g = 1)))
}

> mle2_fit <- tadpole_R_fit()

Notes:

e [t is not absolutely necessary to set bounds on the optimization in
this case, but it is generally good practice and will help avoid many
problems when the optimizer wants to wander off to strange values on
its way to its ultimate best solution (which may be perfectly sensible).

e The tradeoff for setting bounds is that there is a more limited set of
optimizers available. I used L-BFGS-B, which is available within optim,
but is finicky

— it may fail if your parameters are not scaled appropriately (which
you can do by hand by redefining your parameters so they all have
an expected magnitude between 1 and 10, or as above by setting
parscale to the approximate magnitude of each parameter);

— it will fail if it encounters a non-finite value (Inf, NA, or NaN)
when calling the negative log-likelihood function;

— it sometimes steps slightly over the specified lower /upper bounds
when computing the derivatives of the function, so it is best to
set these slightly in from any set of parameter values that will
return a non-finite value (e.g. set the boundary for ¢ at 0.002 or
above rather than exactly at zero so the probability always stays
positive).

Alternatives to L-BFGS-B within R include n1lminb (base R) and bobyqga
(derivative-free, in optimx) [neither supports parscale|. In a quick
test, nlminb and L-BFGS-B were approximately the same speed, while
bobyqga (which may be more robust in some situations) was about 12
times slower ...

Printing out the fit gives just the original function call, the coefficients,
and the log-likelihood:

> mle2_fit

Call:

mle2(minuslogl = Kill ~ dbinom(c * ((TBL/d) * exp(1 - TBL/d))"g,
size = Exposed), start = start, method = "L-BFGS-B", data = data,
lower = c(c = 0.003, d = 10, g = 0), upper = c(c = 0.8, 4 = 20,

g = 50), control = list(parscale = c(c = 0.5, d = 10,
g=1)))
Coefficients:
c d g

0.4138351 13.3508185 18.2481176

Log-likelihood: -12.88

summary(...) gives estimates, approximate standard errors (based on a
quadratic approximation to the likelihood surface), Z values (estimate/std.
error), and Wald p-values against the null hypotheses that each parameter
is separately equal to zero (based again on a quadratic approximation).
coef (summary(...)) will extract the table printed here.

> summary(mle2_fit)

Maximum likelihood estimation

Call:

mle2(minuslogl = Kill ~ dbinom(c * ((TBL/d) * exp(1 - TBL/d))"g,
size = Exposed), start = start, method = "L-BFGS-B", data = data,
lower = c(c = 0.003, d = 10, g = 0), upper = c(c = 0.8, d = 20,

50), control = list(parscale = c(c = 0.5, 4 = 10,
1))

g
g

Coefficients:
Estimate Std. Error z value Pr(z)

c 0.41384 0.12572 3.2918 0.0009953 *x*x*
d 13.35082 0.81106 16.4609 < 2.2e-16 ***
g 18.24812 6.03276 3.0248 0.0024877 **
Signif. codes: O “*x**’ 0.001 ‘*%’ 0.01 ‘x’> 0.05 ‘.” 0.1 < ’> 1

-2 log L: 25.75741

Other accessor methods allow you to do inference (AIC, logLik, de-
viance, anova (Likelihood Ratio Test vs alternative models) ...)

mle2 allows you to generate predicted values, if you have used the for-
mula interface rather than writing your own objective function:

> TBLvec = seq(9.5,36,length=100)
> predfr <- data.frame(TBL=TBLvec,
Kill=predict(mle2_fit,
newdata=data.frame (TBL=TBLvec,
Exposed=10)))

4.2 Profiling

Compute likelihood profiles and profile confidence intervals:

> mle2_profile <- profile(mle2_fit)

> mle2_profile_confint <- confint(mle2_profile)

> ## or just confint(mle2_fit) if you don't want to do anything
> ## else with the profile (such as plotting it or extracting
> ## confidence intervals at multiple alpha levels)

4.3 MCMC

Using the MCMCpack package, which contains a general-purpose Metropolis-
Hastings sampler (MCMCmetropiR), we can get a post hoc MCMC chain by
extracting the negative log-likelihood function from the fitted model and
putting a wrapper around it to (1) pass the parameters as a list rather
than a vector (do.call(...,as.list(p))); (2) compute the (positive) log-
likelihood rather than the negative log-likelihood; (3) intercept bad (non-
finite) values and replace them with large negative values (the specific “bad”
value given here might have to be adjusted for other applications).

We specify the starting values from our previous fit; the length of the
chain; and the thinning fraction.

> tadpole_R_mcmc

function (fit)

{
require (MCMCpack)
mcmcfun <- function(p) {
r <- -do.call(fit@minuslogl, as.list(p))
if (lis.finite(x))
-100
else r
}
MCMCmetropiR(mcmcfun, theta.init = coef(fit), mcmc = 18000,
thin = 9)
}

> mle2_mcmc <- tadpole_R_mcmc(mle2_fit)

leleldcldeelcleleeddeedeldddddeedddededdddeeddddeddeddddddeddedddedeeddeddddddeeddedd
The Metropolis acceptance rate was 0.43719
lelelefcleleeleleleelcdelelceldddddeeddededddededdeddedddedddddddeddeddeedeeededddddeededd

> colnames(mle2_mcmc) <- names (coef (mle2_fit))

The default coda function for trace plots shows the plots in a one-column,
stacked layout: this is generally good for longitudinal data like trace plots,
but can be hard to read for models (unlike this one) with lots of parameters.
Use the layout=c(m,n) argument for an m x n layout; aspect="£ill" to
allow the aspect ratio of the subplots to be flexible); and as.table=TRUE
if you want the parameters arranged top-to-bottom rather than bottom-to-
top.

> print(xyplot(mle2_mcmc,as.table=TRUE))

0.20.406081.01.2

12 14 16
|

10
|

10 20 30 40

T T T T T
0 500 1000 1500 2000
Iteration number

scapeMCMC offers a slightly prettier version of the trace plot (although
its versions do not work with multiple MCM chains):

> plotTrace(mle2_mcmc,layout=c(1,3))

10

> gd <- geweke.diag(mle2_mcmc) ## Z-scores
> (gp <- 2*pnorm(abs(gd$z),lower.tail=FALSE)) ## p values

c d g
0.3878674 0.2466525 0.7013971

> effectiveSize(mle2_mcmc)

c d g
1082.187 1085.380 1021.520

We are aiming for an effective size of 1000 and non-significant p values
from the Geweke diagnostic.

5 AD Model Builder (via R2admb)

Here is a minimal TPL (AD Model Builder definition) file:

11

N

© oo ~ o v

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

DATA_SECTION

init_int nobs

init_vector nexposed(l,nobs)
init_vector TBL(1,nobs)
init_vector Kill(1,nobs)
init_ivector Exposed(l,nobs)

PARAMETER_SECTION

objective_function_value f

init_bounded_number c(0,1)

init_bounded_number d4(0,50)

init_bounded_number g(-1,25)

vector prob(1,nobs) // per capita mort prob
PROCEDURE_SECTION

£=0.0; // initialize objective function

dvariable fpen=0.0; // penalty variable

// power-Ricker

prob = c*pow(elem_prod(TBL/d,exp(1-TBL/d)),g);

// penalties: constrain 0.001 <= prob <= 0.999

prob = posfun(prob,0.001,fpen);

f += 1000*fpen;

prob = 1-posfun(il-prob,0.001,fpen);

f += 1000*fpen;

// binomial negative log-likelihood

f -= sum(log_comb(nexposed,Kill)+
elem_prod(Kill,log(prob))+
elem_prod(nexposed-Kill,log(1l-prob)));

e Comments are written in C++ format: everything on a line after //
is ignored.

e lines 14 are the PARAMETER section; most of the parameters will get
filled in automatically by R2admb based on the input parameters you
specify, but you should include this section if you need to define any
additional utility variables. In this case we define prob as a vector
indexed from 1 to nobs (we will specify nobs, the number of observa-
tions, in our data list).

e most of the complexity of the PROCEDURE section (lines 7 and 11—
14) has to do with making sure that the mortality probabilities do

12

not exceed the range (0,1), which is not otherwise guaranteed by this
model specification. Line 7 defines a utility variable fpen; lines 11-14
use the built-in ADMB function posfun to adjust low probabilities up
to 0.001 (line 11) and high probabilities down to 0.999 (line 13), and
add appropriate penalties to the negative log-likelihood to push the
optimization away from these boundaries (lines 12 and 14).

e the rest of the PROCEDURE section simply computes the mortality prob-
abilities as ¢((S/d)exp(1 — (S/d)))? as specified above (line 9) and
computes the binomial log-likelihood on the basis of these probabil-
ities (lines 16-18). Because this is a log-likelihood and we want to
compute a negative log-likelihood, we subtract it from any penalty
terms that have already accrued. The code is written in C++ syntax,
using = rather than <- for assignment, += to increment a variable and
-= to decrement one. The power operator is pow(x,y) rather than
x"y; elementwise multiplication of two vectors uses elem_prod rather
than *.

To run this model, we save it in a text file called tadpole.tpl; run
setup_admb () to locate the AD Model Builder binaries and libraries on our
system; and run do_admb with appropriate arguments.

function ()

{
run_admb("tadpole")
L <- read_admb("tadpole")
clean_admb("tadpole")
return(L)

}

The data, params, and bounds (parameter bounds) arguments should be

reasonably self-explanatory. When checkparam="write" and checkdata="write"
are specified, R2admb attempts to write appropriate DATA and PARAME-
TER sections into a modified TPL file, leaving the results with the suffix
_gen.tpl at the end of the run. (In this example, we could leave out all of
the DATA section and everything in the PARAMETER sections except the utility
variable prob.)

Now that we have fitted the model, here are some of the things we can
do with it:

e Get basic information about the fit and coefficient estimates:

13

> tfit_admb

Model file: tadpole

Negative log-likelihood: 12.8938

Coefficients:
C d

g

0.4138331 13.3508215 18.2479066

Get vector of coeflicients only:

> coef (tfit_admb)

C d

g

0.4138331 13.3508215 18.2479066

Get a coefficient table including standard errors and (approximate!!)

p values:

> summary (tfit_admb)

Model file: tadpole

Negative log-likelihood: 12.8938

Estimate Std. Error z value Pr(>|z|)

3.292 0.000996 **x
16.461 < 2e-16 *x*x
3.025 0.002489 *x

Coefficients:

c 0.4138 0.1257
d 13.3508 0.8111
g 18.2479 6.0331

Signif. codes: 0 “xx*x’

0.001 ‘%%’

0.01 “x*?

0.05 .

> 0.1 ¢

(you can use coef (summary (tfit_admb)) to extract just the table).

Variance-covariance matrix of the parameters:

> vcov(tfit_admb)

c d
c 0.01580552 0.0578055
d 0.05780550 0.6578345
g 0.50439009 2.2464986

g
0.5043901

2.2464986
36.3982956

Log-likelihood, deviance, AIC:

14

J

1

> c(logLik=logLik (tfit_admb),deviance=deviance (tfit_admb),
AIC=AIC(tfit_admb))

loglLik deviance AIC
-12.8938 25.7876 31.7876

5.1 Profiling

You can also ask ADMB to compute likelihood profiles for a model. If
you code it yourself in the TPL file you need to add variables of type
likeprof _number to keep track of the values: R2admb handles these de-
tails for you. You just need to specify profile=TRUE and give a list of the
parameters you want profiled.

> tfit_admb_prof <- do_admb("ReedfrogSizepred0",

data=c (1list (nobs=nrow(ReedfrogSizepred),
nexposed=rep(10,nrow(ReedfrogSizepred))),
ReedfrogSizepred),

params=1ist(c=0.45,d=13,g=1),

bounds=1ist (c=c(0,1),d=c(0,50),g=c(-1,25)),

run.opts=run.control (checkparam="write",
checkdata="write"),

profile=TRUE,

profpars=c ("C u, "d", ugu) s

admb_errors="warn")

The profile information is stored in a list tfit_admb_prof$prof with
entries for each variable to be profiled. Each entry in turn contains a list with
elements prof (a 2-column matrix containing the parameter value and profile
log-likelihood), ci (confidence intervals derived from the profile), prof _norm
(a profile based on the normal approximation), and ci_norm (confidence
intervals, ditto).

Let’s compare ADMB’s profiles to those generated from R:

> mOprof <- profile(mle2_fit)

(A little bit of magic [hidden] gets everything into the same data frame
and expressed in the same scale that R uses for profiles, which is the square
root of the change in deviance (—2L) between the best fit and the profile:
this scale provides a quick graphical assessment of the profile shape, because
quadratic profiles will be V-shaped on this scale.)

15

method
mie2

— ADMB
ADMB_norm

\
\
\

~——

I\/

| | | | | Ul | | | | | | | ! | '
00 02 04 06 08 108 10 12 14 16 0 10 20 30 40 50

Notice that R evaluates the profile at a smaller number of locations,
using spline interpolation to compute confidence intervals.

5.2 MCMC

Another one of ADMB’s features is that it can use Markov chain Monte
Carlo (starting at the maximum likelihood estimate and using a candidate
distribution based on the approximate sampling distribution of the param-
eters) to get more information about the uncertainty in the estimates. This
procedure is especially helpful for complex models (high-dimensional or con-
taining random effects) where likelihood profiling becomes problematic.

To use MCMC, just add mcmec=TRUE and specify the parameters you want
to keep track of with memcpars:

> tfit_admb_mcmc <- do_admb("ReedfrogSizepred",
data=c (1ist (nobs=nrow(ReedfrogSizepred),
nexposed=rep (10,nrow(ReedfrogSizepred))),
ReedfrogSizepred),
params=1ist(c=0.45,d=13,g=1),
bounds=1list (c=c(0,1),d=c(0,50),g=c(-1,25)),
run.opts=run.control (checkparam="write",
checkdata="write"),
mcmc=TRUE,
mcmc . opts=mcmc. control (mcmcpars=c("c","d","g")))
> ## clean up leftovers:
> unlink(c("reedfrogsizepred0.tpl",
"reedfrogsizepredO_gen.tpl",
"reedfrogsizepred0"))

16

The output of MCMC is stored in two ways.

(1) ADMB internally computes a histogram of the MCMC sampled den-
sity; this is stored in a list element called $hist, as an object of class
admb_hist. It has its own plot method:

> print(plot (tfit_admb_mcmc$hist))

rc r d

w |
o

<
qA
S

7 X
o

N o~
N4

- b=l
o4
o

o - S

T T T T T
] 0.2 0.4 0.6 10 15
x
rg

[eo)

C)'A

o

©

o 4

=

<

o -

o

N

C)'A

o

o

S

o

T T
10 20

X1

(2) Alternatively, the full set of samples is stored (as a data frame) in
list element $mecme. If you load the coda package, you can convert this into
an object of class mcmc, and then use the various methods implemented in
coda to analyze it.

> library(coda)
> mmc <- as.mcmc (tfit_admb_mcmc$mcmc)

Highest posterior density (i.e. Bayesian credible) intervals:

> HPDinterval (mmc)

17

lower upper
c 0.2386734 0.6037669
d 10.8056715 15.2300318
g 9.2973212 24.9245569
attr(,"Probability")
[1] 0.95

Density plots:

> print(densityplot (mmc,layout=c(3,1)))

c d g
~ 7 o
2 o B <
‘@ ~N S
£ h
o S | 8
By T o= o T f sl g T pase—
0.2 0.4 0.6 0.8 8 10 12 14 16 0 5 10 15 20 25

Trace plots:

> print(xyplot(mmc,as.table=TRUE))

18

0.2 0.3 0.4 0.5 0.6 0.7

16

14
Il

12
Il

10

15 20 25
Il Il

10
Il

T T T T T
0 200 400 600 800 1000
Iteration number

(You don’t need to use print to see these plots in an interactive session
— it’s just required for generating documents.)

See the coda and scapeMCMC packages for more information on quanti-
tative and graphical diagnostics for MCMC.

The jaggedness of this trace plot indicates that the chain is not actually
mixing very well. ADMB does offer some options for tuning the chain: see
the ADMB documentation for more details. If you have an ADMB-compiled
executable, then (e.g. ./tadpole -7 | grep mcmc at a Unix or MacOS
terminal command line will give you a terse list of the possibilities:

-mcdiag use diagonal covariance matrix for mcmc with diagonal values 1
-mcmc [N] perform markov chain monte carlo with N simulations

-mcmult N multiplier N for mcmc default

-mcr resume previous mcmc

-mcrb N reduce the amount of correlation in the covariance matrix 1<=N<=9
-mcnoscale don't rescale step size for mcmc depending on acceptance rate
-nosdmcmc turn off mcmc histogram calcs to make mcsave run faster

-mcgrope N use probing strategy for mcmc with factor N

-mcseed N seed for random number generator for markov chain monte carlo

19

© 0w N O U R W N e

=
= o

-mcscale N rescale step size for first N evaluations

-mcsave N save the parameters for every N'th simulation
-mceval Go throught the saved mcmc values from a previous mcsave
6 BUGS

The BUGS input file is very simple:

model {
for (i in 1:N) {
killprob[i] <- c*((TBL[i]l/d)*exp(1-TBL[i]/d)) g
Kill[i] ~ dbin(killprobl[i],10)
¥
priors match bounds on MLE fits
¢ ~ dunif(0,1)
d ~ dunif(0,50) ## dnorm(0,0.001)I(0,)
g ~ dunif(-1,40) ## dnorm(0,0.001)I(0,)
}

e BUGS is not vectorized — all calculations on vectors must be written
out with explicit for loops

e BUGS uses different names and (more dangerously) different parame-
terizations for distributions even when they have the same names (see
http://tinyurl.com/bugsparams): the most common trap is that it
parameterizes the normal distribution by the precision (inverse vari-
ance) rather than the standard deviation

e the priors used here are a bit unusual — we set them as uniform priors
with the same range as the box constraints on the parameters used in
the previous fits. Bayesians would more typically use a Normal distri-
bution with a large variance (small precision, as specified in BUGS)
for parameters that need not be positive, and a log-Normal, Gamma
or other positive distribution with a large variance for vague priors on
parameters that must be positive. There is much discussion of priors:
if you're feeling lost, start with [McCarthy| (2007) for a relatively gen-
tle discussion, and then continue with other references (Gelman et al.,
1996; Lambert et al., 2005). Gelman and co-authors (Gelman and
Hill, 2006; Gelman), [2006|) warn about situations where the traditional
Gamma prior for Normal precisions can be problematic, such as in esti-
mating variances from small samples. The debate over priors continues

20

http://tinyurl.com/bugsparams

in the blogosphere (see e.g. http://tinyurl.com/gelmanprior and
other posts about priors on Andrew Gelman’s blog).

e it is general better practice to run multiple chains (i.e. to run BUGS
from several different starting points); it makes slightly stronger tests
of convergence, such as the Gelman-Rubin statistic, possible (see e.g.
the Weeds example). (This setting goes in the R code to call BUGS,
not in the BUGS model file itself.)

Using JAGS:

> jags_fit <- jags(model="../BUGS/tadpole_bugs.txt",

data=c(1ist(N=10),as.list (subset (ReedfrogSizepred,
select=-c(Exposed)))),
parameters.to.save=c("c","d","g"),
n.chains=2,
inits=list (list(c=0.45,d=13,g=1),
1ist(c=0.4,d=10,g=2)),

progress.bar="none")

Compiling model graph
Resolving undeclared variables
Allocating nodes
Graph Size: 64

Initializing model
> jags_fit

Inference for Bugs model at "../BUGS/tadpole_bugs.txt", fit using jags,
2 chains, each with 2000 iterations (first 1000 discarded)
n.sims = 2000 iterations saved

mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff

c 0.428 0.117 0.252 0.349 0.409 0.487 0.726 1.007 2000
d 12.466 0.848 11.006 11.848 12.401 13.004 14.266 1.001 2000
g 29.572 6.834 14.706 24.737 30.404 35.282 39.586 1.014 250

deviance 18.894 2.242 16.493 17.275 18.234 19.951 24.647 1.019 100

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

21

http://tinyurl.com/gelmanprior

DIC info (using the rule, pD = var(deviance)/2)
pD = 2.5 and DIC = 21.4
DIC is an estimate of expected predictive error (lower deviance is better).

> jags_fit_mcmc <- as.mcmc (jags_fit)
> summary (jags_fit_mcmc)

Iterations = 1:1000

Thinning interval = 1

Number of chains = 2
Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
C 0.4279 0.1174 0.002624 0.006334
d 12.4662 0.8481 0.018964 0.037523
deviance 18.8935 2.2416 0.050124 0.101192
g 29.5719 6.8336 0.152803 0.261642

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
C 0.2518 0.3493 0.409 0.4871 0.7263
d 11.0063 11.8480 12.401 13.0044 14.2664
deviance 16.4933 17.2746 18.234 19.9509 24.6467
g 14.7063 24.7373 30.404 35.2821 39.5862

Since jags_fit_mcmc is an mcmc object, we can run the same plots
and diagnostics as on the previous MCMC runs: xyplot, densityplot,
geweke.diag, effectiveSize, HPDinterval, etc..

> source("../../TOOLS/misc_funs.R") ## get dropdev() tool to ignore deviance
> print(xyplot (dropdev(jags_fit_mcmc),as.table=TRUE))

22

| | | | | |
[

% *HH i\ IR n W‘ ,),J",‘,‘ i thlh Jdﬂ"““".""w
Sl Ty
1wl A WAL NV
. m A 1‘1 H ! l‘“ r‘-'H’J' W " t!""A | W“ “’;

This is better behaved than the ADMB trace plot, although we would
like it to look still more like white noise ...

7 Simulation results

(See figures.)

References

Bolker, B. M. (2008, July). FEcological Models and Data in R. Princeton
University Press.

Gelman, A. (2006). Prior distributions for variance parameters in hierarchi-
cal models. Bayesian Analysis 1(3), 515-533.

Gelman, A., J. Carlin, H. S. Stern, and D. B. Rubin (1996). Bayesian data
analysis. New York, New York, USA: Chapman and Hall.

23

time

0.4-
0.3~
0.2-
.
——
H
0.1-
1 1
ADMB BUGS

method

Figure 2: Timings

24

value

c d 9
0.8- . 50 .
R
0.7-
40+
124
0.6
1 30
0.5- 104 L
20
0.4-
8-
10 i
0.3-
6 . .
027 T T 1 T T T 0- T U i
ADMB BUGS R ADMB BUGS R ADMB BUGS R
method

Figure 3: Distribution of parameter estimates

25

ADMB

BUGS R

2.0+

15+

1.0+

0.5+

0.0—

25+

20—

15+
ol M

est

%%

80—

60—

Figure 4: Full distribution of parameters+ClIs

26

cilen coverage rmse
300
1004 4 154
250
0.95
A
200+
0.90 s 107
150 -
0.85
100 5
0.80
50
0.75+
|
0+ = 3 od =
T T T T T T T
c d c d g c d
parameter

Figure 5: Confidence interval summaries

27

method
ADMB
4 BUGS
R

Gelman, A. and J. Hill (2006). Data Analysis Using Regression and Mul-
tilevel/Hierarchical Models. Cambridge, England: Cambridge University
Press.

Lambert, P.; A. Sutton, P. Burton, K. Abrams, and D. Jones (2005). How
vague is vague? A simulation study of the impact of the use of vague prior
distributions in MCMC using WinBUGS. Statistics in Medicine 24 (15),
2401-2428.

McCarthy, M. (2007). Bayesian methods for ecology. Cambridge, England:
Cambridge University Press.

McCoy, M. W., B. M. Bolker, K. M. Warkentin, and J. R. Vonesh (2011,
June). Predicting predation through prey ontogeny using size-dependent
functional response models. The American Naturalist 177(6), 752-766.
PMID: 21597252.

Vonesh, J. R. and B. M. Bolker (2005). Compensatory larval responses
shift tradeoffs associated with predator-induced hatching plasticity. Ecol-
ogy 86(6), 1580-1591.

28

	Summary
	Introduction
	Basics
	R
	Fitting
	Profiling
	MCMC

	AD Model Builder (via R2admb)
	Profiling
	MCMC

	BUGS
	Simulation results

