
Theta logistic population model writeup

Casper W. Berg

October 11, 2012

1 Summary

• ADMB is by far the fastest method, but it takes a little bit more coding
than doing it in the BUGS language.

• HMM can be implemented in R, but it takes some effort and is quite slow.

• JAGS is slower but not too bad for this relatively simple problem.

• All methods produce quite similar results with respect to parameter esti-
mates.

• JAGS produced much wider credible intervals for the estimated parame-
ters than the corresponding confidence intervals for ADMB and HMM.

• For this application, choosing the mean of the MCMC chains from the
BUGS runs instead of the mode leads to more bias in the parameter esti-
mates.

• Coverage fractions are close to 0.95 for all the methods.

2 Introduction

This example is based on Pedersen et al. (2011), which contains much more
details than this shorter writeup.

The example is a theta logistic population model, which is a nonlinear state-
space model. The log-transformed population size is modelled as a nonlinear
function of its previous size in the following way:

Xt = Xt−1 + r0

(
1−

(
exp(Xt−1)

K

)θ)
+ et, (1)

Yt = Xt + ut, (2)

where et ∼ N(0, Q) and ut ∼ N(0, R).

1

This example does not contain any real data, so instead we will simulate 200
timesteps of the population with an initial value substantially below the carrying
capacity, such that in the beginning the population will grow, and in the end of
the time series the population size will fluctuate around the carrying capacity.
If we had only observed the population fluctuating around the carrying capacity
it might have been impossible to identify all the parameters in the model, e.g.
θ, and a simpler model should be chosen, for instance by setting θ = 1.

3 Basics

A state-space model describes the dynamics of a latent state (Xt) and how
data (Yt) relate to this state. An important feature of SSMs is their ability to
model random variations in the latent state and in data. For t ∈ {1, . . . , N}
the general system and observation equations of the SSM are respectively Xt =
g(t,Xt−1, et), and Yt = h(t,Xt,ut), where et ∼ N(0,Qt) is the system error
and ut ∼ N(0,Rt) is the observation error. Here, “∼ N(·)” means Gaussian
distributed. Because of the possible nonlinearity of g and h, advanced filtering
and smoothing methods must be employed to gain meaningful estimates of Xt.
In this respect, the extended Kalman filter, the unscented Kalman filter, and
Bayesian filtering e.g. using Markov chain Monte Carlo (MCMC) sampling or
BUGS are common approaches. Alternative methods for nonlinear state esti-
mation are hidden Markov models (HMMs, Zucchini and MacDonald, 2009) and
mixed effects models using the software AD Model Builder (ADMB).

All parameters in this example except the carrying capacity, K, has been log
transformed to ensure positive values. The carrying capacity might also have
been log transformed as this should obviously also be positive, but since the
chosen true value is far from zero we judged that log-transforming K was not
critical. Besides being convenient for ensuring positive valus, log transforming
parameters also changes the shape of the likelihood surface. If standard confi-
dence intervals based on quadratic approximations of the likelihood surface are
used, it is of course important, that this quadratic approximation is reasonable,
which it might often not be when dealing with nonlinear problems. In this prob-
lem, θ and r0 are known to be highly correlated, and with a boomerang-shaped
likelihood surface when not log transformed (Polansky et al., 2009), which is
undesirable.

4 ADMB

The ADMB solution to this problem is the same basic template used for any
type of state-space model: The states are declared as random effects, and the
system and observation equations are put into SEPARABLE_FUNCTIONs in order
gain huge speed improvements. ADMB will then be able to exploit the fact,
that the covariance matrix for all the states in a state-space model is a banded
matrix, and skip work on all the zeroes.

2

The data section of the ADMB solution contains the initial parameter values
(this is just an alternative to using a .pin file), the number of data points N ,
and the observations y.

The parameter section contains all the fixed effects (starting with init), the
random effects, which are the latent states (population size), and finally the
objective function which is the joint negative log-likelihood.

The procedure section is quite simple for this problem, as all the likeli-
hood contribution is done within the SEPARABLE_FUNCTIONs. The only thing
we are doing outside the SEPARABLE_FUNCTIONs is to set the values of the
sdreport_numbers. Notice, that we pass the log-transformed values (i.e. the pa-
rameters to be estimated) to the SEPARABLE_FUNCTIONs, and not the sdreport_numbers.
This is because all computations used in the likelihood must be performed inside
the SEPARABLE_FUNCTIONs and NOT in the procedure section.

1 //

2 // ADMB code for the theta logistic population model.

3 //

4 // This model should be compiled with -r flag for random effects,

5 // I.e. admb -r admbmodel

6 // and should be executed with the -noinit flag,

7 // I.e. admbmodel -noinit

8 //

9 // Author: Casper W. Berg, 13-07-2010

10 //

11 DATA_SECTION

12 init_vector initPars(1,5);

13 init_number N;

14 init_vector y(1,N)

15 PARAMETER_SECTION

16 init_number logSdU;

17 init_number logSdy;

18 init_number logr0;

19 init_number logTheta;

20 init_bounded_number K(100.0,2000.0);

21 random_effects_vector U(1,N);

22 objective_function_value jnll;

23

24 // do delta method to find confidence intervals

25 // for the following untransformed parameters

26 sdreport_number r0;

27 sdreport_number theta;

28 sdreport_number SdU;

29 sdreport_number Sdy;

30

31 PRELIMINARY_CALCS_SECTION

32 //initialize parameters

33 logr0 = log(initPars(1));

34 K = initPars(2);

35 logSdU = log(initPars(3));

3

36 logSdy = log(initPars(4));

37 logTheta = log(initPars(5));

38

39 PROCEDURE_SECTION

40 jnll=0.0; // joint negative log-likelihood to be minimized.

41 r0 = exp(logr0);

42 theta=exp(logTheta);

43 SdU = exp(logSdU);

44 Sdy = exp(logSdy);

45

46 // transition equation (Eq. 3)

47 for(int i=2; i<=N; ++i){

48 step(U(i-1),U(i),logSdU,logr0,K,i-1,logTheta);

49 }

50 // observation equation (Eq. 4)

51 for(int i=1; i<=N; ++i){

52 obs(logSdy, U(i), i);

53 }

54

55 SEPARABLE_FUNCTION void step(const dvariable& U1, const dvariable& U2,

56 const dvariable& logSdU, const dvariable& logr0,

57 const dvariable& K, int i, const dvariable& logTheta)

58 dvariable var2=exp(2.0*logSdU);

59 dvariable r0 = exp(logr0);

60 dvariable theta = exp(logTheta);

61 dvariable pred = U1 + r0*(1.0-pow(exp(U1)/K,theta));

62 jnll+=0.5*(log(2.0*M_PI*var2)+square(pred-U2)/var2);

63

64 SEPARABLE_FUNCTION void obs(const dvariable& logSdy, const dvariable& x,

65 int i)

66 dvariable var=exp(2.0*logSdy);

67 jnll+=0.5*(log(2.0*M_PI*var)+square(x-y(i))/var);

68

69 TOP_OF_MAIN_SECTION

70 // Set max n.o. independent variables to 1000 and increase memory.

71 gradient_structure::set_MAX_NVAR_OFFSET(1000);

72 arrmblsize=2000000;

5 BUGS

In Pedersen et al. (2011) we used OpenBUGS to run our model, which is pos-
sible from within R using the rbugs package. In this example we changed to
JAGS and the R2Jags package, as OpenBUGS apparantly is problematic to run
using MacOS, and we wanted platform independent solutions if possible. The
BUGS code was able to run unchanged using JAGS, and there were only minor
differences between rbugs and R2Jags.

As to keep the results comparable between the frequentist and Bayesian

4

methods, we wanted vague (or uninformative) priors on our parameters, so we
assigned uniform priors with wide support to all the fixed parameters, except
the variance parameters for which we tried two different priors. It is common to
assign vague inverse-gamma distributed priors to variance parameters (Spiegel-
halter et al., 2003; Lambert et al., 2005). Gelman (2006), however, recommends
using a uniform prior on the log-transformed standard deviation. Therefore, as
in Pedersen et al. (2011), to asses the sensitivity of the estimation results to the
choice of prior we perform BUGS estimation using both types of priors.

The OpenBUGS versions used in Pedersen et al. (2011) showed signifi-
cant differences in running time, with the inverse-gamma distribution on the
variances being six times faster than using a uniform distribution on the log-
tranformed standard deviations. JAGS however showed no noticable difference
in running speed using the two different priors.

1 # BUGS script for analyzing the theta logistic population model

2 # Authors: C.W. Berg and M.W. Pedersen, 13/7-2010

3

4 model{

5

6 # Define prior densities for parameters

7 K ~ dunif(1.0, 22000.0)

8 logr0 ~ dunif(-4.0, 2.0)

9 logtheta ~ dunif(-4.0, 2.0)

10 iQ ~ dgamma(0.0001,0.0001)

11 iR ~ dgamma(0.0001,0.0001)

12

13 # Transform parameters to fit in the model

14 r0 <- exp(logr0)

15 theta <- exp(logtheta)

16

17 # Initial state

18 x[1] ~ dunif(0,10)

19

20 # Loop over all states, Eq. 3 in paper

21 for(t in 1:(N-1)){

22 mu[t] <- x[t] + r0 * (1 - pow(exp(x[t])/K, theta))

23 x[t+1] ~ dnorm(mu[t],iQ)

24 }

25

26 # Loop over all observations, Eq. 4 in paper

27 for(t in 1:(N)){

28 y[t] ~ dnorm(x[t],iR)

29 }

30

31 }

5

1 model{

2

3 K ~ dunif(1.0, 22000.0)

4 logr0 ~ dunif(-4.0, 2.0)

5 logtheta ~ dunif(-4.0, 2.0)

6 stdQ ~ dunif(0,100)

7 stdR ~ dunif(0,100)

8 iQ <- 1/(stdQ*stdQ);

9 iR <- 1/(stdR*stdR);

10

11 r0 <- exp(logr0)

12 theta <- exp(logtheta)

13

14

15 x[1] ~ dunif(0,10)

16

17 for(t in 1:(N-1)){

18 mu[t] <- x[t] + r0 * (1 - pow(exp(x[t])/K, theta))

19 x[t+1] ~ dnorm(mu[t],iQ)

20 }

21

22

23 for(t in 1:(N)){

24 y[t] ~ dnorm(x[t],iR)

25 }

26

27 }

6 R

There is - to my knowledge - no easy way to do nonlinear state-space models in R.
In Pedersen et al. (2011) it is described how it can be done by discretizing the
continuous state-space and reforumulating the state-space model as a hidden
Markov model, and Matlab code was provided in the online supplementary
material. I translated this code into R, and it is available on the svn-repository
on the NCEAS website. I will not go into details about the R implementation
in this writeup.

7 Simulation results

The simulation results show, that ADMB is many orders of magnitude faster
than JAGS and the HMM implementation in R (1), though it should be noted,
that the two latter methods might be able to produce similar results in shorter
time, by choosing shorter mcmc-chains for JAGS and a coarser grid for the
HMM solution.

6

From the distribution of parameter estimates (figure 2) we must note, that
the estimates of K,log r0, and θ seems to be biased – K and log r0 positively and
θ negatively. This is not too surprising considering that these parameters are
quite correlated (this can be confirmed for instance by inspecting the matrix
of parameter correlations produced by ADMB in the .cor file), and that the
likelihood surface may be ugly in the sense that it is not well approximated by
a quadratic form as discussed in Pedersen et al. (2011).

All of the methods seem to perform equally well with respect to bias in
parameter estimates.

This is also evident in figure 3, which show both point estimates and CIs for
each simulation and method.

Figure 4 summarises the root mean square error (rmse), length of the con-
fidence intervals, and coverage fractions (the fraction of simulations where the
CI contains the true value). It shows, that ADMB and the HMM method gives
roughly the same results, whereas JAGS has a greater error and wider CIs. The
coverage fractions are not too different – all of them are relatively close to the
expected value of 0.95. The wider CIs produced by JAGS is consistent with the
results obtained in Pedersen et al. (2011).

All the comparisons discussed so far has been using the mode of the MCMC
chains as the parameter estimate for the BUGS methods. For posterior distri-
butions obtained from MCMC that are approximately normal it does of course
not matter whether the mean, mode or median is chosen as they are identical
for the normal distribution. In this case however, the posterior distributions
are not close to normal, and so the choice of estimator is important. Figure 5
is identical to figure 2 except that the mean of the chains instead of the mode
was chosen for the BUGS runs. Choosing the mean in this case clearly results
in more biased estimates of the parameters.

References

Gelman, A. (2006). Prior distributions for variance parameters in hierarchical
models. Bayesian analysis 1 (3), 515–533.

Lambert, P., A. Sutton, P. Burton, K. Abrams, and D. Jones (2005). How
vague is vague? A simulation study of the impact of the use of vague prior
distributions in MCMC using WinBUGS. Statistics in Medicine 24 (15), 2401–
2428.

Pedersen, M., C. Berg, U. Thygesen, A. Nielsen, and H. Madsen (2011). Esti-
mation methods for nonlinear state-space models in ecology. Ecological Mod-
elling 222 (8), 1394–1400.

Polansky, L., P. De Valpine, J. Lloyd-Smith, and W. Getz (2009). Likelihood
ridges and multimodality in population growth rate models. Ecology 90 (8),
2313–2320.

7

0

200

400

600

●
●
●

●

●

●
● ●●

●

ADMB BUGS.GP BUGS.UP R
method

tim
e

Figure 1: Timings

8

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

K logr0 logSqrtQ

logSqrtR logTheta

800

850

900

950

1000

−2.6

−2.4

−2.2

−2.0

−1.8

−1.6

−3.0

−2.5

−2.0

−1.9

−1.8

−1.7

−1.6

−1.5

−1.4

−1

0

1

A B.G B.U R A B.G B.U R A B.G B.U R

A B.G B.U R A B.G B.U R
method

va
lu

e

Figure 2: Distribution of parameter estimates

9

ADMB BUGS.GP BUGS.UP R

1000

2000

3000

4000

−3

−2

−1

0

1

−5

−4

−3

−2

−2.4
−2.2
−2.0
−1.8
−1.6
−1.4

−4

−2

0

2

● ●

● ●
● ● ●

●

●

● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ●

●

●
●

● ● ●
● ●

●

●
● ● ●

● ●

●
●

● ●

● ●
●

● ●
●

●

● ● ● ●
● ●

●
● ●

●
● ●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ●

● ● ● ●
● ● ● ●

●

● ●

● ●
● ●

●

●

● ●
● ● ● ●

●

● ●
● ●

● ●
● ●

●

●

● ● ● ●
● ●

● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

● ● ● ● ●
●

● ●

● ●
●

●

●

● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ●

● ●

●
●

● ● ●
● ●

●

●
● ● ●

● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●
● ●

K
logr0

logS
qrtQ

logS
qrtR

logT
heta

0 5 10 15 20 25 300 5 10 15 20 25 300 5 10 15 20 25 300 5 10 15 20 25 30
n2

es
t

Figure 3: Full distribution of parameters+CIs

10

cilen coverage rmse

1

2

3

4

5

0.90

0.95

1.00

0.1

0.2

0.3

0.4

0.5

0.6

K Q R r0theta K Q R r0theta K Q R r0theta
parameter

va
lu

e

method

ADMB

BUGS.GP

BUGS.UP

R

Figure 4: Confidence interval summaries. Rmse and interval lengths for the
parameter K has been divided by 100 to get a better scaling on the y-axis.
Coverage fractions has been added a small amount of jitter to avoid overlapping
values.

11

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

K logr0 logSqrtQ

logSqrtR logTheta

800

850

900

950

1000

−2.5

−2.0

−1.5

−1.0

−3.5

−3.0

−2.5

−2.0

−1.9

−1.8

−1.7

−1.6

−1.5

−1

0

1

A B.G B.U R A B.G B.U R A B.G B.U R

A B.G B.U R A B.G B.U R
method

va
lu

e

Figure 5: Distribution of parameter estimates using the mean value of the chains
for BUGS runs instead of the mode.

12

Spiegelhalter, D., A. Thomas, N. Best, and D. Lunn (2003). WinBUGS user
manual. Version 1.4. MRC Biostatistics Unit, Cambridge, UK .

Zucchini, W. and I. MacDonald (2009). Hidden Markov Models for Time Series.
London: Chapman & Hall/CRC.

13

	Summary
	Introduction
	Basics
	ADMB
	BUGS
	R
	Simulation results

