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Note

This (partially finished) vignette borrows heavily on a Scaling-Optim vignette by John Nash and
some material is duplicated so that the flow of ideas here is self-contained. We will use the statistical
programming systemR(http://www.r-project.org) to present most of our calculations, but will use
R, AD Model Builder (abbreviated ADMB) and the Bayesian estimation approach called BUGS
(via either JAGS or OpenBUGS) to attempt estimation of models for the data of this problem.

This document is intended as a repository of a range of different attempts to approach a problem
in nonlinear estimation. As such it has sections that are heavy reading. It is an archive of what we
did and thought about rather than a summary, though the presentation is not necessarily in order.

1 The initial Hobbs weed infestation problem

This problem came across the desk of John Nash sometime in 1974 when he was working on the
development of a program to solve nonlinear least squares estimation problems. He had written
several variants of Gauss-Newton methods in BASIC for a Data General NOVA system that offered
a very limited environment of a 10 character per second teletype with paper tape reader and punch
that allowed access to a maximum 8K byte (actually 4K word) segment of the machine. Arithmetic
was particularly horrible in that floating point used six hexadecimal digits in the mantissa with no
guard digit.

The problem was supplied by Mr. Dave Hobbs of Agriculture Canada. As told to John Nash,
the observations (y) are weed densities per unit area over 12 growing periods. We were never given
the actual units of the observations. Here is the data.

> # draw the data

> y<-c(5.308, 7.24, 9.638, 12.866, 17.069, 23.192, 31.443,

+ 38.558, 50.156, 62.948, 75.995, 91.972)

> t<-1:12

> plot(t,y)

> title(main="Hobbs' weed infestation data", font.main=4)
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Hobbs' weed infestation data

It was suggested that the appropriate model was a 3-parameter logistic, that is,

yi = b1/(1 + b2 exp(−b3ti)) + εi (1)

where εi ∼ N(0, σ2), ti is the growing period, and i = 1, . . . , 26.
The problem can be approached as a nonlinear least squares problem. In R, the nls() function

could be used, but fails for many sets of starting parameters, and optimization turns out to be
more robust in this case. Examples of the use of nls() are presented later. The problem has been
published in a number of places, notably Nash (1979) and Nash and Walker-Smith (1987).

Most discussions of the problem have centered on solving the three parameter nonlinear least
squares problem, either as such a problem using Gauss-Newton (ref?) or Marquardt (ref?) methods,
or else via general nonlinear optimization of the sum of squares. While minimizing the sum of
squares of residuals is one approach to “fitting” a function to data, statisticians frequently prefer
the maximum likelihood approach so that the variance can also be estimated at the same time.
This is conventionally accomplished by minimizing the negative log likelihood.

For our problem,

nll = 0.5
∑n

i=1(log(2πσ2) + (res[i]2)/σ2)
or

nll = 0.5(n log(2πσ2) +
∑n

i=1(res[i]
2/σ2))

There are a number of annoyances about the particular logistic problem and data:

� The scale of the problem is such that the upper asymptote b1 has scale of the order of 100, b2
has scale of the order 10, while the coefficient of time b3 is scaled by 0.1. We can explicitly put
such scaling factors into the model so that the coefficients all come out with roughly similar
scale. As we shall show, this eases the computational task.

� It is useful if all the coefficients are positive. We can use explicit bounds in some optimization
and nonlinear least squares methods, but will see that writing the model in terms of the logs
of the parameters achieves the same goal and also provides a scaling of the problem.
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� Other transformations of the problem are possible; at least one will be mentioned later.

2 Preparation

Load all the packages we’ll need, up front (not all of these are absolutely necessary, but it will be
most convenient to make sure you have them installed now).

> library(ggplot2) ## pictures

> library(bbmle) ## MLE fitting in R (wrapper)

> library(optimx) ## additional R optimizers

> library(MCMCpack) ## for post-hoc MCMC in R

> library(coda) ## analysis of MCMC runs (R, BUGS, ADMB)

> library(R2admb) ## R interface to AD Model Builder

> library(R2jags) ## R interface to JAGS (BUGS dialect)

> # source("../R/tadpole_R_funs.R")

>

3 Solving the maximum likelihood problem – log-form parameters

We will solve the 4-parameter maximum likelihood problem by ADMB, R, and JAGS (a BUGS
variant, Plummer (2003)). The parameters our estimation or optimization tools seek will be the
logs of the quantities that enter the models, thereby forcing positivity on these quantities.

3.1 Solving the ML problem in ADMB

The we use a small script to prepare the data file for use by AD Model Builder:

> source("../ADMB/weeds_ADMB_funs.R")

> weeds_ADMB_setup()

This creates the file

# "../ADMB/weed.dat" produced by dat_write() from R2admb Tue Aug 14 20:11:45 2012

# noObs

12

#

1 5.308

2 7.24

3 9.638

4 12.866

5 17.069

6 23.192

7 31.443

8 38.558

9 50.156

10 62.948

11 75.995

12 91.972
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The implementation follows the typical AD Model Builder template, first data is read in, then
model parameters are declared, and finally the negative log likelihood is coded.

DATA_SECTION
init_int noObs
init_matrix obs(1,noObs,1,2)

PARAMETER_SECTION
init_number logb1;
init_number logb2;
init_number logb3;
init_number logSigma;

sdreport_number sigma2;
sdreport_number b1;
sdreport_number b2;
sdreport_number b3;
sdreport_vector pred(1,noObs);
objective_function_value nll;

PRELIMINARY_CALCS_SECTION

PROCEDURE_SECTION
b1=exp(logb1);
b2=exp(logb2);
b3=exp(logb3);
sigma2=exp(2.0*logSigma);

for(int i=1; i<=noObs; ++i){
pred(i)=b1/(1.0+b2*exp(-b3*obs(i,1)));
nll+=0.5*(log(2.0*M_PI*sigma2)+square((obs(i,2)-pred(i)))/sigma2);

}

REPORT_SECTION
report<<"rss " <<norm2(column(obs,2)-pred)<<endl;

The model can be run from the command line by compiling and then executing the produced
binary, but this can also be accomplished from within the R console like this as long as we ensure
that theR working directory is set to the directory containing the AD Model Builder code for the
problem weed.tpl and the corresponding data file weed.dat.

> file.copy("../ADMB/weed.tpl","weed.tpl")

[1] TRUE

> file.copy("../ADMB/weed.dat","weed.dat")

[1] TRUE

> system('admb weed')

> system.time(system('./weed > weedout.txt'))

user system elapsed

0.004 0.024 0.035

> unlink("weed.tpl") # for cleanup of WRITEUP directory

> unlink("weed.dat")

Initial statistics: 4 variables; iteration 0; function evaluation 0; phase 1

Function value 1.1771317e+04; maximum gradient component mag -2.3509e+04

Var Value Gradient |Var Value Gradient |Var Value Gradient
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1 0.00000 -4.12021e+02 | 2 0.00000 2.38244e+00 | 3 0.00000 -5.51269e+00

4 0.00000 -2.35086e+04 |

Intermediate statistics: 4 variables; iteration 10; function evaluation 25; phase 1

Function value 6.0649538e+01; maximum gradient component mag -2.2037e+02

Var Value Gradient |Var Value Gradient |Var Value Gradient

1 4.44243 -2.20366e+02 | 2 5.12862 4.57014e+01 | 3 -0.46331 -1.84794e+02

4 0.88196 -6.60776e+01 |

4 variables; iteration 20; function evaluation 36; phase 1

Function value 2.4384978e+01; maximum gradient component mag -2.8737e+01

Var Value Gradient |Var Value Gradient |Var Value Gradient

1 5.04861 -1.91374e+01 | 2 3.77868 6.10380e+00 | 3 -1.08066 -2.87369e+01

4 1.05750 1.06646e+01 |

4 variables; iteration 30; function evaluation 46; phase 1

Function value 2.2788992e+01; maximum gradient component mag -2.5509e+01

Var Value Gradient |Var Value Gradient |Var Value Gradient

1 5.57992 -8.96350e+00 | 2 4.04802 7.33044e+00 | 3 -1.25408 -2.55090e+01

4 0.92887 1.07695e+01 |

4 variables; iteration 40; function evaluation 69; phase 1

Function value 1.0842488e+01; maximum gradient component mag -7.4469e+02

Var Value Gradient |Var Value Gradient |Var Value Gradient

1 5.39693 -3.33655e+02 | 2 3.94939 2.38746e+02 | 3 -1.20164 -7.44692e+02

4 -0.50648 2.13965e-01 |

4 variables; iteration 50; function evaluation 80; phase 1

Function value 7.8214592e+00; maximum gradient component mag 1.9830e-04

Var Value Gradient |Var Value Gradient |Var Value Gradient

1 5.27906 1.03439e-04 | 2 3.89369 -6.21736e-05 | 3 -1.15973 1.98303e-04

4 -0.76715 2.11426e-07 |

- final statistics:

4 variables; iteration 51; function evaluation 81

Function value 7.8215e+00; maximum gradient component mag 9.4619e-07

Exit code = 1; converg criter 1.0000e-04

Var Value Gradient |Var Value Gradient |Var Value Gradient

1 5.27906 4.42720e-07 | 2 3.89369 -2.36799e-07 | 3 -1.15973 9.46188e-07

4 -0.76715 9.89104e-09 |

Estimating row 1 out of 4 for hessian

Estimating row 2 out of 4 for hessian

Estimating row 3 out of 4 for hessian

Estimating row 4 out of 4 for hessian

After running the model we can plot the fit to make sure all went well.
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Estimates and standard deviations of model parameters and derived quantities are located in
the file weed.std.

index name value std dev

1 logb1 5.2791e+00 5.0086e-02

2 logb2 3.8937e+00 2.9896e-02

3 logb3 -1.1597e+00 1.8982e-02

4 logSigma -7.6715e-01 2.0412e-01

5 sigma2 2.1561e-01 8.8021e-02

6 b1 1.9619e+02 9.8262e+00

7 b2 4.9092e+01 1.4676e+00

8 b3 3.1357e-01 5.9523e-03

9 pred 5.3199e+00 1.5835e-01

10 pred 7.2072e+00 1.7632e-01

11 pred 9.7300e+00 1.8936e-01

12 pred 1.3075e+01 1.9478e-01

13 pred 1.7462e+01 1.9168e-01

14 pred 2.3134e+01 1.8478e-01

15 pred 3.0337e+01 1.8781e-01

16 pred 3.9274e+01 2.1279e-01

17 pred 5.0048e+01 2.4618e-01

18 pred 6.2600e+01 2.5541e-01

19 pred 7.6648e+01 2.5149e-01

20 pred 9.1684e+01 4.2122e-01

3.2 Solving the ML problem in R

We first load functions to compute the residuals (actually in natural rather than log scale – the
logs are only needed in the optimization).

> # source("../R/shobbs.R", echo=TRUE)

> source("../R/lhobbs.R", echo=TRUE)

> lhobbs.f <- function(xl, y) {

+ if (abs(12 * exp(xl[3])) > 50) {

+ fbad <- .Machine$double.xmax

+ return(fbad)

+ }

+ res .... [TRUNCATED]

> lhobbs.res <- function(xl, y) {

+ x <- exp(xl)

+ if (abs(12 * x[3]) > 50) {

+ rbad <- rep(.Machine$double.xmax, length(x))

+ .... [TRUNCATED]

> lhobbs.jac <- function(xl, y) {

+ x <- exp(xl)

+ jj <- matrix(0, 12, 3)

+ t <- 1:12

+ yy <- exp(-x[3] * t)

+ zz <- 1/(1 + x[2] * .... [TRUNCATED]
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> lhobbs.g <- function(xl, y) {

+ shj <- lhobbs.jac(xl, y)

+ shres <- lhobbs.res(xl, y)

+ shg <- as.vector(2 * (shres %*% shj))

+ retu .... [TRUNCATED]

Then we define the log likelihood function.

> source("../R/lhobbslik.R", echo=TRUE)

> lhobbs.lik <- function(xaug, y = y0) {

+ xl <- xaug[1:3]

+ logSigma <- xaug[4]

+ sigma2 = exp(2 * logSigma)

+ res <- lhobbs.res(xl, .... [TRUNCATED]

> lhobbs.lg <- function(xaug, y = y0) {

+ xl <- xaug[1:3]

+ logSigma <- xaug[4]

+ sigma2 = exp(2 * logSigma)

+ res3 <- lhobbs.res(xl, .... [TRUNCATED]

It is a good idea to test the function and gradient to make sure we have our code working
properly. There is still some room for error, but at least the numerical gradients of the function
match the values from the analytic expressions.

> source("../R/lhobbsliktest.R", echo=TRUE)

> source("../R/lhobbs.R")

> source("../R/lhobbslik.R")

> require(numDeriv)

> y0 <- c(5.308, 7.24, 9.638, 12.866, 17.069, 23.192,

+ 31.443, 38.558, 50.156, 62.948, 75.995, 91.972)

> xxax <- c(2, 5, 3, 1)

> xxa <- log(xxax)

> xl3 <- xxa[1:3]

> res0 <- lhobbs.res(xl3, y = y0)

> print(res0)

[1] -3.706636 -5.264484 -7.639233 -10.866061 -15.069003 -21.192000
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[7] -29.443000 -36.558000 -48.156000 -60.948000 -73.995000 -89.972000

> ss0 <- lhobbs.f(xl3, y = y0)

> print(ss0)

[1] 22701.32

> jj0 <- lhobbs.jac(xl3, y = y0)

> jj0n <- jacobian(lhobbs.res, xl3, y = y0)

> print(jj0 - jj0n)

[,1] [,2] [,3]

[1,] 1.622902e-11 8.335888e-12 -7.149836e-12

[2,] -1.407408e-11 -4.927860e-12 4.276995e-11

[3,] 5.253353e-12 8.200460e-12 -7.176780e-12

[4,] 3.741807e-11 5.181383e-11 2.631627e-11

[5,] 8.541101e-11 -7.939929e-12 4.143344e-11

[6,] 1.165295e-10 1.190895e-11 5.231059e-11

[7,] -1.559814e-10 1.098205e-11 5.086183e-13

[8,] -1.250731e-10 -2.302512e-11 5.640126e-12

[9,] 4.160114e-10 -1.880307e-11 -9.938316e-12

[10,] -2.587837e-10 -9.357623e-13 2.616794e-11

[11,] 4.347960e-10 -4.658886e-14 1.537432e-12

[12,] 4.287295e-10 -2.319523e-15 8.350282e-14

> g0 <- lhobbs.g(xl3, y = y0)

> g0n <- grad(lhobbs.f, xl3, y = y0)

> print(g0)

[1] -1608.004405 2.641076 -8.813356

> print(g0 - g0n)

[1] -9.966129e-08 6.350435e-08 -5.101980e-08

> f <- lhobbs.lik(xxa, y = y0)

> f

[1] 11361.69

> ga <- lhobbs.lg(xxa, y = y0)

> ga

[1] -804.002202 1.320538 -4.406678 -22689.316307
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> gn <- grad(lhobbs.lik, xxa, y = y0)

> gn

[1] -804.002202 1.320538 -4.406678 -22689.316307

Finally, we run the optimization. Here we try a number of methods both with and without
analytic gradients.

> source("../R/lhobbslikrun.R", echo=TRUE)

> require("optimx")

> source("../R/lhobbs.R")

> source("../R/lhobbslik.R")

> source("../R/lhobbslikn.R")

> cat("Using analytic derivatives\n")

Using analytic derivatives

> test <- try(ansR5 <- optimx(log(c(2, 5, 3, 1)), lhobbs.lik,

+ lhobbs.lg, control = list(all.methods = TRUE)))

end topstuff in optimxCRAN

> if (class(test) != "try-error") {

+ print(ansR5)

+ } else {

+ cat("ML attempt with optimx on scaled likelihood and analytic gradients failed ..." ... [TRUNCATED]

par fvalues method fns

4 NA, NA, NA, NA 8.988466e+307 L-BFGS-B NA

9 NA, NA, NA, NA 8.988466e+307 Rcgmin NA

11 5.2790641, 3.8936885, -1.1597334, -0.7671477 7.821459 newuoa 1968

2 5.206357, 3.861371, -1.133986, 0.492384 17.51391 CG 358

3 5.2783751, 3.8933393, -1.1595111, -0.7669179 7.821567 Nelder-Mead 417

5 5.2790329, 3.8936753, -1.1597222, -0.7671501 7.821459 nlm NA

7 5.2790649, 3.8936871, -1.1597343, -0.7670325 7.821459 spg 652

10 NA, NA, NA, NA NULL Rvmmin NA

1 5.2790644, 3.8936887, -1.1597335, -0.7671526 7.821459 BFGS 597

6 5.2790645, 3.8936887, -1.1597335, -0.7671502 7.821459 nlminb 74

8 5.2790645, 3.8936887, -1.1597335, -0.7671503 7.821459 ucminf 59

grs itns conv KKT1 KKT2 xtimes

4 NULL NULL 9999 NA NA 0.004

9 NA NA 9999 NA NA 0.004

11 NA NULL 0 TRUE TRUE 0.06
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2 101 NULL 1 FALSE TRUE 0.016

3 NA NULL 0 FALSE TRUE 0.008

5 NA 69 0 FALSE TRUE 0.012

7 NA 437 0 TRUE TRUE 0.112

10 NA NA 9999 NA NA 0

1 66 NULL 0 TRUE TRUE 0.016

6 45 44 0 TRUE TRUE 0.008

8 59 NULL 0 TRUE TRUE 0.004

> cat("Using numerical derivative approximations\n")

Using numerical derivative approximations

> test <- try(ansR5n <- optimx(log(c(2, 5, 3, 1)), lhobbs.lik,

+ control = list(all.methods = TRUE)))

end topstuff in optimxCRAN

function (xaug, y = y0)

{

xl <- xaug[1:3]

logSigma <- xaug[4]

sigma2 = exp(2 * logSigma)

res <- lhobbs.res(xl, y)

nll <- 0.5 * (length(res) * log(2 * pi * sigma2) + sum(res *

res)/sigma2)

}

> if (class(test) != "try-error") {

+ print(ansR5n)

+ } else {

+ cat("ML attempt with optimx on scaled likelihood and numerical gradients fail ..." ... [TRUNCATED]

par fvalues method fns

4 NA, NA, NA, NA 8.988466e+307 L-BFGS-B NA

9 NA, NA, NA, NA 8.988466e+307 Rcgmin NA

11 5.2790641, 3.8936885, -1.1597334, -0.7671477 7.821459 newuoa 1968

2 5.1381561, 3.8288219, -1.1088996, 0.7803977 20.88628 CG 358

3 5.2783751, 3.8933393, -1.1595111, -0.7669179 7.821567 Nelder-Mead 417

8 5.2784607, 3.8933534, -1.1595431, -0.7671387 7.821539 ucminf 54

1 5.2792349, 3.8937746, -1.1597901, -0.7671011 7.821465 BFGS 260

5 5.2790329, 3.8936753, -1.1597222, -0.7671501 7.821459 nlm NA

7 5.2790635, 3.8936842, -1.1597345, -0.7670815 7.821459 spg 809

10 NA, NA, NA, NA NULL Rvmmin NA

6 5.2790645, 3.8936887, -1.1597335, -0.7671502 7.821459 nlminb 72

grs itns conv KKT1 KKT2 xtimes

4 NULL NULL 9999 NA NA 0.012

9 NA NA 9999 NA NA 0.008

11 NA NULL 0 TRUE TRUE 0.06
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2 101 NULL 1 FALSE TRUE 0.024

3 NA NULL 0 FALSE TRUE 0.008

8 54 NULL 0 FALSE TRUE 0.004

1 57 NULL 0 FALSE TRUE 0.016

5 NA 69 0 FALSE TRUE 0.012

7 NA 545 0 FALSE TRUE 0.164

10 NA NA 9999 NA NA 0.004

6 208 47 0 TRUE TRUE 0.004

3.3 Solving the ML problem in JAGS

The BUGS/JAGS control file we will use is given below. This simply provides the (scaled) model
and very simple uniform priors. The range for the deviance was widened based on estimates found.

model {

## attempt to model weeds data using JAGS/BUGS

b1<-exp(logb1)

b2<-exp(logb2)

b3<-exp(logb3)

sigma<-exp(logsigma)

for (i in 1:N) {

yhat[i] <- b1/(1+b2*exp(-b3*t[i]))

y[i] ~ dnorm(yhat[i],tau)

}

tau <- 1/(sigma*sigma)

## priors -- note must include 0 because of one chain

logb1 ~ dunif(-10,10)

logb2 ~ dunif(-10,10)

logb3 ~ dunif(-10,10)

logsigma ~ dunif(-10,10)

}

We run JAGS from R as follows.

> # rm(list=ls()) ## Clear workspace. NOT in vignette.

> library(rjags) # ? Is this needed?

> library(R2jags)

> y<-c(5.308, 7.24, 9.638, 12.866, 17.069, 23.192, 31.443, 38.558, 50.156, 62.948,

+ 75.995, 91.972)

> t<-1:12

> # Note that n.iter=10000 and n.burning=1000 was not sufficient.

>

> tfit_jags <- jags(model="../BUGS/weeds_bugs.txt",

+ data=list(N=length(y),t=t, y=y),

+ parameters.to.save=c("logb1","logb2","logb3","logsigma"),

+ n.iter=10000,

+ n.burnin=1000,

+ n.thin=10,

+ n.chains=3,

+ inits=list(list(logb1=1,logb2=1,logb3=1,logsigma=1,

+ .RNG.name="base::Wichmann-Hill", .RNG.seed=654321),

+ list(logb1=-1,logb2=-1,logb3=-1,logsigma=-1,
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+ .RNG.name="base::Wichmann-Hill", .RNG.seed=321654),

+ list(logb1=0,logb2=0,logb3=0,logsigma=0,

+ .RNG.name="base::Wichmann-Hill", .RNG.seed=123456)))

Compiling model graph

Resolving undeclared variables

Allocating nodes

Graph Size: 99

Initializing model

> # wpred <- .... stuff to create predicted model

> cat("output of jags() run\n")

output of jags() run

> tfit_jags

Inference for Bugs model at "../BUGS/weeds_bugs.txt", fit using jags,

3 chains, each with 10000 iterations (first 1000 discarded), n.thin = 10

n.sims = 2700 iterations saved

mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff

logb1 5.633 0.595 5.178 5.270 5.324 5.877 7.253 1.747 6

logb2 4.162 0.471 3.835 3.888 3.923 4.260 5.461 1.732 7

logb3 -1.223 0.099 -1.440 -1.303 -1.176 -1.155 -1.119 1.711 6

logsigma -0.235 0.566 -0.963 -0.662 -0.427 0.199 0.966 1.499 8

deviance 28.311 12.613 16.349 18.788 21.921 39.698 53.840 1.524 8

For each parameter, n.eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)

pD = 53.9 and DIC = 82.2

DIC is an estimate of expected predictive error (lower deviance is better).

This shows us the estimates found from our MCMC iterations. The effective sample sizes for all
four estimated parameters are reasonably large and the Gelman Rhat statistics are less than 1.2,
suggesting that the chains have converged. The following code simply extracts part of the output
that we will used for some graphs.

> tfit_jags_b <- tfit_jags$BUGSoutput

We graph the progress of the MCMC process to check if it has stabilized (”converged”). While
there is some noise in the plots, they are reasonably stable.

> library(emdbook) ## for as.mcmc.bugs

> tfit_jags_m <- as.mcmc.bugs(tfit_jags_b)
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We can also look at the parameter distributions. Again, these are not too different, and we can
treat the results as reasonable.

> library(coda)

> print(xyplot(tfit_jags_m))
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Clearly the Bayesian (JAGS) approach takes a very different point of view to the optimization
(R and ADMB) methods. Nevertheless, the model parameters are not very different, and the JAGS
outputs give us some idea of the possible distribution of the parameters.

> ## x11()

> print(densityplot(tfit_jags_m))
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4 Other views of the Weeds problem

4.1 Nonlinear least squares

The original problem was, with apparent simplicity, to find the three unscaled logistic parameters
that provided the best fit to the 12 observations. This turned out to be surprisingly difficult. Indeed,
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the Statistical Research Service of Agriculture Canada was, in 1974, one of the most sophisticated
and well-connected biostatistics units in the world, but staff found no computer program that would
crack this problem. John Nash was, at the time, trying to develop programs in BASIC for a Data
General Nova minicomputer and an HP 9830A desktop calculator, and offered to give his codes a
try. These succeeded in finding a solution.

The Weeds problem was, in fact, a prime motivator to prepare very robust nonlinear least
squares and optimization codes for what were, in today’s view, rather poor computational platforms.
However, even today, the original problem creates difficulties. Let us see what R can do.

> source("../R/weeds_nls1.R", echo=TRUE)

> cat("nls tests on Hobbs weeds problem\n")

nls tests on Hobbs weeds problem

> tdata <- read.table("../DATA/weeds.dat", header = TRUE)

> t <- tdata$t

> y <- tdata$y

> rm(tdata)

> cat("Test with original 3-parameter model, unscaled parameters -- good starting parameters\n")

Test with original 3-parameter model, unscaled parameters -- good starting parameters

> xx <- c(200, 50, 0.3)

> q <- try(ansxx <- nls(y ~ x1/(1 + x2 * exp(-x3 * t)),

+ data = list(y, t), start = list(x1 = xx[1], x2 = xx[2], x3 = xx[3])))

> if (class(q) == "try-error") cat("Failed\n") else print(ansxx)

Nonlinear regression model

model: y ~ x1/(1 + x2 * exp(-x3 * t))

data: list(y, t)

x1 x2 x3

196.1863 49.0916 0.3136

residual sum-of-squares: 2.587

Number of iterations to convergence: 4

Achieved convergence tolerance: 1.918e-07

> cat("Same problem, but a very crude starting point\n")

Same problem, but a very crude starting point

> xy <- c(1, 1, 1)
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> q <- try(ansxy <- nls(y ~ x1/(1 + x2 * exp(-x3 * t)),

+ data = list(y, t), start = list(x1 = xy[1], x2 = xy[2], x3 = xy[3])))

> if (class(q) == "try-error") cat("Failed\n") else print(ansxy)

Failed

> cat("Scaled problem, and a crude but not random starting point\n")

Scaled problem, and a crude but not random starting point

> xx <- c(2, 1, 1)

> q <- try(ansxxs <- nls(y ~ 100 * x1/(1 + 10 * x2 *

+ exp(-0.1 * x3 * t)), data = list(y, t), start = list(x1 = xx[1],

+ x2 = xx[2], x3 = x .... [TRUNCATED]

> if (class(q) == "try-error") cat("Failed\n") else print(ansxxs)

Nonlinear regression model

model: y ~ 100 * x1/(1 + 10 * x2 * exp(-0.1 * x3 * t))

data: list(y, t)

x1 x2 x3

1.962 4.909 3.136

residual sum-of-squares: 2.587

Number of iterations to convergence: 20

Achieved convergence tolerance: 1.253e-06

> hobbs.f <- function(x) {

+ if (abs(12 * x[3]) > 50) {

+ fbad <- .Machine$double.xmax

+ return(fbad)

+ }

+ res <- hobbs.r .... [TRUNCATED]

> hobbs.res <- function(x) {

+ if (abs(12 * x[3]) > 50) {

+ rbad <- rep(.Machine$double.xmax, length(x))

+ return(rbad)

+ }

+ .... [TRUNCATED]

> hobbsl.f <- function(xlog) {

+ x <- exp(xlog)

+ if (abs(12 * x[3]) > 50) {

+ fbad <- .Machine$double.xmax

+ return(fbad)
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+ .... [TRUNCATED]

> cat("For comparison, try Nelder-Mead on the failed case\n")

For comparison, try Nelder-Mead on the failed case

> fval <- hobbs.f(c(1, 1, 1))

> cat("Initial hobbs.f function at c(1,1,1) =", fval,

+ "\n")

Initial hobbs.f function at c(1,1,1) = 23520.58

> anm1 <- optim(c(1, 1, 1), hobbs.f, control = list(trace = 0))

> anm1

$par

[1] 31.830911 -16.423012 4.166667

$value

[1] 10071.14

$counts

function gradient

250 NA

$convergence

[1] 0

$message

NULL

> cat("And again, try Nelder-Mead on the failed case but in log form\n")

And again, try Nelder-Mead on the failed case but in log form

> fval <- hobbsl.f(c(0, 0, 0))

> cat("Initial log form hobbsl.f function at c(0,0,0) =",

+ fval, "\n")

Initial log form hobbsl.f function at c(0,0,0) = 23520.58

> anml1 <- optim(c(0, 0, 0), hobbsl.f, control = list(trace = 0))

> anml1

$par

[1] 5.279378 3.893328 -1.160023
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$value

[1] 2.587462

$counts

function gradient

270 NA

$convergence

[1] 0

$message

NULL

> print(exp(anml1$par))

[1] 196.2478215 49.0739370 0.3134789

> cat("And again, try Nelder-Mead on the failed case but scaled start\n")

And again, try Nelder-Mead on the failed case but scaled start

> fval <- hobbs.f(c(100, 10, 0.1))

> cat("Initial hobbs.f function at c(100,10,0.1) =",

+ fval, "\n")

Initial hobbs.f function at c(100,10,0.1) = 10685.29

> anm2 <- optim(c(100, 10, 0.1), hobbs.f, control = list(trace = 0))

> anm2

$par

[1] 195.8632785 49.0609496 0.3137564

$value

[1] 2.587545

$counts

function gradient

247 NA

$convergence

[1] 0

$message

NULL

17



Here we see that the very crude Nelder-Mead optimizer does reasonably well if we give it a
scaled start or work with the logs of the parameters. the nls() does less well than we might hope.
However, truthfully, this is a ”bad” problem.

4.2 Reparametrization

Our model is an S curve, but our data only has the early up-turned part of the curve, so we can
anticipate that we are going to have difficulty estimating one or both of the upper limit of the
growth and the rate of getting there. These are the b1 and b3 parameters in he original model.

Doug Bates has suggested the model

yy = c1/(1 + exp((c2 − tt)/c3))

where the c1 should be the same as b1 of the original model. However, now it is much clearer
that c2 is the time at which we reach the half-way point to c1. Moreover, c3 is now scaled in time
units and controls how fast the curve rises. (The same arguments can be applied to declining data
with c3 having its sign reversed.)

Looking at the graph of the data, we can provide a rough guess at the half-way point as (13,
100), making a rough guess of c1 = 100 and c2 = 13. Plugging these values and the first data point
(1, 5.308) into the model above gives us

c3 = (c2 − 1)/ log(c1/y[1] − 1) = 3.331294

This gives the output

> dbn<-nls(y~c1/(1+exp((c2-t)/c3)), start=list(c1=200,c2=13,c3=3.33), trace=TRUE)

132.4117 : 200.00 13.00 3.33

3.087018 : 193.510427 12.315751 3.173038

2.587485 : 196.075031 12.414664 3.188793

2.587277 : 196.184968 12.417261 3.189077

2.587277 : 196.186251 12.417298 3.189083

where the starting function value and parameters are very close to the solution. However, it
should be noted that random starts to nls() seem to give singular gradient or similar failures to
those using the standard model.
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